Anharmonic zero point vibrational energies (ZPVEs) calculated using both conventional CCSD(T) and MP2 in combination with vibrational second-order perturbation theory (VPT2) are compared to explicitly correlated CCSD(T)-F12 and MP2-F12 results that utilize vibrational configuration interaction (VCI) theory for 26 molecules of varying size. Sequences of correlation consistent basis sets are used throughout. It is found that the explicitly correlated methods yield results close to the basis set limit even with double-zeta quality basis sets. In particular, the anharmonic contributions to the ZPVE are accurately recovered at just the MP2 (or MP2-F12) level of theory. Somewhat surprisingly, the best vibrational CI results agreed with the VPT2 values with a mean unsigned deviation of just 0.09 kJ/mol and a standard deviation of just 0.11 kJ/mol. The largest difference was observed for C(4)H(4)O (0.34 kJ/mol). A simplified version of the vibrational CI procedure that limited the modal expansion to at most 2-mode coupling yielded anharmonic corrections generally within about 0.1 kJ/mol of the full 3- or 4-mode results, except in the cases of C(3)H(8) and C(4)H(4)O where the contributions were underestimated by 1.3 and 0.8 kJ/mol, respectively (34% and 40%, respectively). For the molecules considered in this work, accurate anharmonic ZPVEs are most economically obtained by combining CCSD(T)-F12a/cc-pVDZ-F12 harmonic frequencies with either MP2/aug-cc-pVTZ/VPT2 or MP2-F12/cc-pVDZ-F12/VCI anharmonic corrections.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4777568DOI Listing

Publication Analysis

Top Keywords

anharmonic point
8
point vibrational
8
vibrational energies
8
explicitly correlated
8
basis sets
8
anharmonic corrections
8
anharmonic
6
vibrational
6
kj/mol
5
energies tipping
4

Similar Publications

CuZnSn(S,Se) (CZT(S,Se)) thin films exhibit the characteristics necessary to be effective absorbers in solar cells. In this report, the room temperature experimental Raman scattering spectra, recorded at different excitation wavelengths, are systematically analyzed theoretically using the results of DFT harmonic frequencies calculations at the Γ-point for various modifications of kesterite (KS), stannite (ST), and pre-mixed Cu-Au (PMCA) crystal structures. The specific anharmonism-induced features in the spectra of CZT(S,Se) crystals are identified, and the spectral lineshapes at varied strengths of anharmonic interaction are simulated.

View Article and Find Full Text PDF

Quantum and quasi-classical dynamics calculations were conducted for the reaction of Si with OH on the latest potential energy surface (PES), which is obtained by fitting tens of thousands of energy points by using the many-body expansion formula. To obtain an accurate PES, all energy points calculated with aug-cc-pVQZ and aug-cc-pV5Z basis sets were extrapolated to the complete basis set limit. The accuracy of our new PES was verified by comparing the topographic characteristics and contour maps of potential energy with other works.

View Article and Find Full Text PDF

Dynamics Calculations of the Flexibility and Vibrational Spectrum of the Linear Alkane CH, Based on Machine-Learned Potentials.

J Phys Chem A

December 2024

Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States.

Hydrocarbons are the central feedstock of fuels, solvents, lubricants, and the starting materials for many synthetic materials, and thus the physical properties of hydrocarbons have received intense study. Among these, the molecular flexibility and the power and infrared spectroscopies are the focus of this paper. These are examined for the linear alkane CH using molecular dynamics (MD) calculations and recent machine-learned potentials.

View Article and Find Full Text PDF

A transient carbon-centered hydroperoxyalkyl intermediate (•QOOH) in the oxidation of cyclopentane is identified by IR action spectroscopy with time-resolved unimolecular decay to hydroxyl (OH) radical products that are detected by UV laser-induced fluorescence. Two nearly degenerate •QOOH isomers, β- and γ-QOOH, are generated by H atom abstraction of the cyclopentyl hydroperoxide precursor. Fundamental and first overtone OH stretch transitions and combination bands of •QOOH are observed and compared with anharmonic frequencies computed by second-order vibrational perturbation theory.

View Article and Find Full Text PDF

Little is known about the strong mediating effect of the ligand sphere and the coordination geometry on the strength and isotopologue selectivity of hydrogen adsorption on the undercoordinated copper(i) site. Here, we explore this effect using gas-phase complexes Cu(HO)(H) (with ≤ 3) as model systems. Cu(HO) attracts dihydrogen (82 kJ mol ) more strongly than bare Cu (64 kJ mol ) does.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!