Response of neutral water clusters (H(2)O)(n), n = 9-20, to external uniform dipolar static electric fields is studied for some lowest-energy conformers for each "n" within an energy band of about 9 kcal mol(-1) of their field-free counterparts. We perform density functional theory computations with B3LYP∕6-311++G(2d,2p) model chemistry. Increasing the electric field destabilizes and distorts a cluster by elongating, hence weakening its hydrogen bonds, culminating into a catastrophic structural breakdown beyond a specific threshold field-strength. The electric field induced conformational transitions to extended structures stretched along the field direction to lower-energy configurations that appear as local minima on their potential energy surface are presented. It is observed that a typical structural transition of this type is always accompanied by an abrupt increase in the electric dipole moment of the cluster over and above its smooth increment with increasing applied field; the increase being phenomenal during breakdown. Interestingly, the HOMO-LUMO energy gap for a given conformer is found to diminish with increasing field strength, abruptly approaching zero at structural breakdown. In essence, the structural evolution traced through hydrogen-bond networks of the clusters reveals multiple enhancements in size by "opening up" of three-dimensional morphologies to form net-like structures with less number of hydrogen bonds. These clusters exhibit greater structural complexity than that encountered in the relatively small clusters reported previously.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4776214DOI Listing

Publication Analysis

Top Keywords

electric field
12
field induced
8
structural evolution
8
water clusters
8
clusters h2on
8
density functional
8
hydrogen bonds
8
structural breakdown
8
field
6
structural
6

Similar Publications

Extracellular vesicles (EVs), membrane-encapsulated nanoparticles shed from all cells, are tightly involved in critical cellular functions. Moreover, EVs have recently emerged as exciting therapeutic modalities, delivery vectors, and biomarker sources. However, EVs are difficult to characterize, because they are typically small and heterogeneous in size, origin, and molecular content.

View Article and Find Full Text PDF

Manipulation of Surface Spin Configurations for Enhanced Performance in Oxygen Evolution Reactions.

Nano Lett

January 2025

Jiangxi Provincial Key Laboratory of Green Hydrogen and Advanced Catalysis, College of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.

studies of the relationship between surface spin configurations and spin-related electrocatalytic reactions are crucial for understanding how magnetic catalysts enhance oxygen evolution reaction (OER) performance under magnetic fields. In this work, 2D FeSe nanosheets with rich surface spin configurations are synthesized via chemical vapor deposition. magnetic force microscopy and Raman spectroscopy reveal that a 200 mT magnetic field eliminates spin-disordered domain walls, forming a spin-ordered single-domain structure, which lowers the OER energy barrier, as confirmed by theoretical calculations.

View Article and Find Full Text PDF

During the last decades, the use of innovative hybrid materials in energy storage devices has led to notable advances in the field. However, further enhancement of their electrochemical performance faces significant challenges nowadays, imposed by the materials used in the electrodes and the electrolyte. Such problems include the high solubility of both the organic and the inorganic anode components in the electrolyte as well as the limited intrinsic electronic conductivity and substantial volume variation of the materials during cycling.

View Article and Find Full Text PDF

Anionic modulation induces molecular polarity in a three-component crown ether system.

Dalton Trans

January 2025

School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China.

Three-component crown ether phase change materials are characterized by a structural phase change in response to external stimuli such as temperature and electric or magnetic fields, resulting in significant changes in physical properties. In this work, we designed and synthesized two novel host-guest crown ether molecules [(PTFMA)(15-crown-5)ClO] (1) and [(PTFMA)(15-crown-5)PF] (2), through the reaction of -trifluoromethylaniline (PTFMA) with 15-crown-5 in perchloric acid or hexafluorophosphoric acid aqueous solution. Compound 1 undergoes a structural change from the non-centrosymmetric space group (2) to the centrosymmetric space group (2/) with increasing temperature.

View Article and Find Full Text PDF

Laser-induced breakdown spectroscopy (LIBS) technology has been widely used in many fields including industrial production, space exploration, medical analysis, environmental pollution detection, etc. However, the stability problem of LIBS is one of the core problems for its further development. Solutions in the LIBS field in recent decades were summarized and classified from the physical mechanism and analysis method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!