A many-particle homogeneous reacting system of reactants, where bulk reversible reaction A + B ↔ C takes place, is considered in the framework of the kinetic theory approach. The various forms of kinetic equations in the thermodynamic limit are obtained, and important relations between kinetic coefficients characterizing the course of bulk and the corresponding geminate reactions are established. Based on the kinetic equations derived, different results available in the literature have been analyzed. Universal long-term kinetic laws of the reaction course are deduced.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4779476DOI Listing

Publication Analysis

Top Keywords

kinetic equations
8
kinetic
5
theory reversible
4
reversible associative-dissociative
4
associative-dissociative diffusion-influenced
4
diffusion-influenced chemical
4
reaction
4
chemical reaction
4
reaction bulk
4
bulk reaction
4

Similar Publications

Biokinetic models can optimise pollutant degradation and enhance microbial growth processes, aiding to protect ecosystem protection. Traditional biokinetic approaches (such as Monod, Haldane, etc.) can be challenging, as they require detailed knowledge of the organism's metabolism and the ability to solve numerous kinetic differential equations based on the principles of micro, molecular biology and biochemistry (first engineering principles) which can lead to discrepancies between predicted and actual degradation rates.

View Article and Find Full Text PDF

Extended Time-Dependent Density Functional Theory for Multibody Densities.

Phys Rev Lett

December 2024

Key Laboratory for Laser Plasmas and School of Physics and Astronomy, and Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China.

Time-dependent density functional theory (TDDFT) is widely used for understanding and predicting properties and behaviors of matter. As one of the fundamental theorems in TDDFT, Van Leeuwen theorem [Phys. Rev.

View Article and Find Full Text PDF

Manufacturing of Liposomes Using a Stainless-Steel Microfluidic Device: An Investigation into Design of Experiments.

Langmuir

January 2025

Department of Polymer and Materials Chemistry, Faculty of Chemistry & Petroleum Sciences, Shahid Beheshti University, P.O. Box 1983969411 Tehran, Iran.

Liposomes are highly beneficial nanocarrier systems due to their biocompatibility, low toxicity, and exceptional inclusiveness, which lead to improved drug bioavailability. For biological applications, accurate control over these nanoparticles' mean size and size distribution is essential. Micromixers facilitate the continuous production of liposomes, enhancing the precision of size regulation and reproducibility.

View Article and Find Full Text PDF

Elucidating Thermal Decomposition Kinetic Mechanism of Charged Layered Oxide Cathode for Sodium-Ion Batteries.

Adv Mater

January 2025

Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.

The safety of the P2-type layered transition metal oxides (P2-NaTMO), a promising cathode material for sodium-ion batteries (SIBs), is a prerequisite for grid-scale energy storage systems. However, previous thermal runaway studies mainly focused on morphological changes resulting from gas production detection and thermogravimetric analysis, while the structural transition and chemical reactions underlying these processes are still unclear. Herein, a comprehensive methodology to unveil an interplay mechanism among phase structures, interfacial microcrack, and thermal stability of the charged P2-NaNiMnO (NNMO) and the P2-NaNiLiMnO (NNMO-Li) at elevated temperatures is established.

View Article and Find Full Text PDF

This work investigates the solid-state reaction between iridium and zirconium carbide, resulting in the formation of carbon and ZrIr-an intermetallic compound of great interest for modern high-temperature materials science. We have found a transition of kinetic regimes in this reaction: from linear kinetics (when the chemical reaction is a limiting stage) at 1500 and 1550 °C to 'non-parabolic kinetics' at 1600 °C. Non-parabolic kinetics is characterized by the thickness of the product layer being proportional to a power of time less than 1/2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!