A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Iridium dihydroxybipyridine complexes show that ligand deprotonation dramatically speeds rates of catalytic water oxidation. | LitMetric

We report highly active iridium precatalysts, [Cp*Ir(N,N)Cl]Cl (1-4), for water oxidation that are supported by recently designed dihydroxybipyridine (dhbp) ligands. These ligands can readily be deprotonated in situ to alter the electronic properties at the metal; thus, these catalyst precursors have switchable properties that are pH-dependent. The pKa values in water of the iridium complexes are 4.6(1) and 4.4(2) with (N,N) = 6,6'-dhbp and 4,4'-dhbp, respectively, as measured by UV-vis spectroscopy. For homogeneous water oxidation catalysis, the sacrificial oxidant NaIO4 was found to be superior (relative to CAN) and allowed for catalysis to occur at higher pH values. With NaIO4 as the oxidant at pH 5.6, water oxidation occurred most rapidly with (N,N) = 4,4'-dhbp, and activity decreased in the order 4,4'-dhbp (3) > 6,6'-dhbp (2) ≫ 4,4'-dimethoxybipyridine (4) > bipy (1). Furthermore, initial rate studies at pH 3-6 showed that the rate enhancement with dhbp complexes at high pH is due to ligand deprotonation rather than the pH alone accelerating water oxidation. Thus, the protic groups in dhbp improve the catalytic activity by tuning the complexes' electronic properties upon deprotonation. Mechanistic studies show that the rate law is first-order in an iridium precatalyst, and dynamic light scattering studies indicate that catalysis appears to be homogeneous. It appears that a higher pH facilitates oxidation of precatalysts 2 and 3 and their [B(Ar(F))4](-) salt analogues 5 and 6. Both 2 and 5 were crystallographically characterized.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic302448dDOI Listing

Publication Analysis

Top Keywords

water oxidation
20
ligand deprotonation
8
electronic properties
8
water
6
oxidation
6
iridium
4
iridium dihydroxybipyridine
4
dihydroxybipyridine complexes
4
complexes ligand
4
deprotonation dramatically
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!