Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Moisture, as a core determination of the economic value of coal, can result in the utilization and energy inefficiency. Near-infrared (NIR) spectroscopy, with advantages of high accuracy and low cost, provides significant solution to the quick and non-invasive detection of coal moisture. In the present paper, the improvement of the coal moisture analysis was conducted based on the precision of 1% and insufficient comparisons in recent experiments, and aspects of spectrum pretreatment and wavelength selection were mainly discussed. The optimized result with R-square of 0.995, RMSEC of 0.06% and RMSEP of 0.27% indicates the priority of wavelet decomposition and reconstruction, compared with other methods, in the noise reduction and baseline removing of original spectra (1 300-2 400 nm) before PLS modeling, and the stability experiment validates its robust potential in improving precision of coal moisture detection based on the NIR spectroscopy.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!