RNA-programmed genome editing in human cells.

Elife

Howard Hughes Medical Institute, University of California, Berkeley , Berkeley , United States ; Department of Molecular and Cell Biology , University of California, Berkeley , Berkeley , United States.

Published: January 2013

Type II CRISPR immune systems in bacteria use a dual RNA-guided DNA endonuclease, Cas9, to cleave foreign DNA at specific sites. We show here that Cas9 assembles with hybrid guide RNAs in human cells and can induce the formation of double-strand DNA breaks (DSBs) at a site complementary to the guide RNA sequence in genomic DNA. This cleavage activity requires both Cas9 and the complementary binding of the guide RNA. Experiments using extracts from transfected cells show that RNA expression and/or assembly into Cas9 is the limiting factor for Cas9-mediated DNA cleavage. In addition, we find that extension of the RNA sequence at the 3' end enhances DNA targeting activity in vivo. These results show that RNA-programmed genome editing is a facile strategy for introducing site-specific genetic changes in human cells.DOI:http://dx.doi.org/10.7554/eLife.00471.001.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3557905PMC
http://dx.doi.org/10.7554/eLife.00471DOI Listing

Publication Analysis

Top Keywords

rna-programmed genome
8
genome editing
8
human cells
8
guide rna
8
rna sequence
8
dna cleavage
8
dna
6
editing human
4
cells type
4
type crispr
4

Similar Publications

An Efficient CRISPR/Cas9 Genome Editing System for a Cultivated Strain by Ribonucleoprotein Method.

J Fungi (Basel)

December 2023

National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.

The CRISPR/Cas9 system has become a popular approach to genome editing. Compared with the plasmid-dependent CRISPR system, the ribonucleoprotein (RNP) complex formed by the in vitro assembly of Cas9 and single-guide RNA (sgRNA) has many advantages. However, only a few examples have been reported and the editing efficiency has been relatively low.

View Article and Find Full Text PDF

CRISPR enzymes require a defined protospacer adjacent motif (PAM) flanking a guide RNA-programmed target site, limiting their sequence accessibility for robust genome editing applications. In this study, we recombine the PAM-interacting domain of SpRY, a broad-targeting Cas9 possessing an NRN > NYN (R = A or G, Y = C or T) PAM preference, with the N-terminus of Sc + +, a Cas9 with simultaneously broad, efficient, and accurate NNG editing capabilities, to generate a chimeric enzyme with highly flexible PAM preference: SpRYc. We demonstrate that SpRYc leverages properties of both enzymes to specifically edit diverse PAMs and disease-related loci for potential therapeutic applications.

View Article and Find Full Text PDF

CRISPR enzymes require a defined protospacer adjacent motif (PAM) flanking a guide RNA-programmed target site, limiting their sequence accessibility for robust genome editing applications. In this study, we recombine the PAM-interacting domain of SpRY, a broad-targeting Cas9 possessing an NRN > NYN PAM preference, with the N-terminus of Sc++, a Cas9 with simultaneously broad, efficient, and accurate NNG editing capabilities, to generate a chimeric enzyme with highly flexible PAM preference: SpRYc. We demonstrate that SpRYc leverages properties of both enzymes to specifically edit diverse NNN PAMs and disease-related loci for potential therapeutic applications.

View Article and Find Full Text PDF

CRISPR-associated transposases (CASTs) enable recombination-independent, multi-kilobase DNA insertions at RNA-programmed genomic locations. However, the utility of type V-K CASTs is hindered by high off-target integration and a transposition mechanism that results in a mixture of desired simple cargo insertions and undesired plasmid cointegrate products. Here we overcome both limitations by engineering new CASTs with improved integration product purity and genome-wide specificity.

View Article and Find Full Text PDF

Efficient genome editing in filamentous fungi via an improved CRISPR-Cas9 ribonucleoprotein method facilitated by chemical reagents.

Microb Biotechnol

November 2021

CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Science, Fenglin Rd 300, Shanghai, 200032, China.

DNA double-strand break (DSB) repair induced by the RNA-programmed nuclease Cas9 has become a popular method for genome editing. Direct genome editing via Cas9-CRISPR gRNA (guide RNA) ribonucleoprotein (RNP) complexes assembled in vitro has also been successful in some fungi. However, the efficiency of direct RNP transformation into fungal protoplasts is currently too low.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!