AI Article Synopsis

  • Stabilizing the structure of viral proteins and nucleic acids is crucial for the effectiveness of live recombinant viral vaccines, especially when not stored in cold conditions, which is particularly important for addressing diseases like HIV globally.
  • The study introduces a dissolvable microneedle array (MA) delivery system that maintains the effectiveness of live recombinant human adenovirus type 5 (rAdHu5) vaccines, resulting in strong CD8(+) T-cell responses comparable to traditional injection methods.
  • Intravital imaging shows the MA cargo successfully targets dendritic cells in the skin layers, and the immunization process involves specific dendritic cell types, offering new insights into how these vaccines prime CD8(+)

Article Abstract

Stabilization of virus protein structure and nucleic acid integrity is challenging yet essential to preserve the transcriptional competence of live recombinant viral vaccine vectors in the absence of a cold chain. When coupled with needle-free skin delivery, such a platform would address an unmet need in global vaccine coverage against HIV and other global pathogens. Herein, we show that a simple dissolvable microneedle array (MA) delivery system preserves the immunogenicity of vaccines encoded by live recombinant human adenovirus type 5 (rAdHu5). Specifically, dried rAdHu5 MA immunization induced CD8(+) T-cell expansion and multifunctional cytokine responses equipotent with conventional injectable routes of immunization. Intravital imaging demonstrated MA cargo distributed both in the epidermis and dermis, with acquisition by CD11c(+) dendritic cells (DCs) in the dermis. The MA immunizing properties were attributable to CD11c(+) MHCII(hi) CD8α(neg) epithelial cell adhesion molecule (EpCAM(neg)) CD11b(+) langerin (Lang; CD207)(neg) DCs, but neither Langerhans cells nor Lang(+) DCs were required for CD8(+) T-cell priming. This study demonstrates an important technical advance for viral vaccine vectors progressing to the clinic and provides insights into the mechanism of CD8(+) T-cell priming by live rAdHu5 MAs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3581957PMC
http://dx.doi.org/10.1073/pnas.1214449110DOI Listing

Publication Analysis

Top Keywords

cd8+ t-cell
16
t-cell priming
12
dendritic cells
8
skin delivery
8
live recombinant
8
viral vaccine
8
vaccine vectors
8
langerin negative
4
negative dendritic
4
cells promote
4

Similar Publications

Therapeutic human papillomavirus (HPV) DNA vaccine is an attractive option to control existed HPV infection and related lesions. The two early viral oncoproteins, E6 and E7, are continuously expressed in most HPV-related pre- and cancerous cells, and are ideal targets for therapeutic vaccines. We have previously developed an HPV 16 DNA vaccine encoding a modified E7/HSP70 (mE7/HSP70) fusion protein, which demonstrated significant antitumor effects in murine models.

View Article and Find Full Text PDF

Sexual dimorphism in lung transcriptomic adaptations in fetal alcohol spectrum disorders.

Respir Res

January 2025

Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, 275 E Hancock St, Rm 195, Detroit, MI, 48201, USA.

Current fetal alcohol spectrum disorders (FASD) studies primarily focus on alcohol's actions on the fetal brain although respiratory infections are a leading cause of morbidity/mortality in newborns. The limited studies examining the pulmonary adaptations in FASD demonstrate decreased surfactant protein A and alveolar macrophage phagocytosis, impaired differentiation, and increased risk of Group B streptococcal pneumonia with no study examining sexual dimorphism in adaptations. We hypothesized that developmental alcohol exposure in pregnancy will lead to sexually dimorphic fetal lung morphological and immune adaptations.

View Article and Find Full Text PDF

Limited restoration of T cell subset distribution and immune function in older people living with HIV-1 receiving HAART.

Immun Ageing

January 2025

State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.

Background: Older people living with HIV-1 (PLWH) experience a dual burden from the combined effects of aging and HIV-1 infection, resulting in significant immune dysfunction. Despite receiving HAART, immune reconstitution is not fully optimized. The objective of this study was to investigate the impact of aging and HAART on T cell subsets and function in PLWH across different age groups, thereby providing novel insights into the prognosis of older PLWH.

View Article and Find Full Text PDF

Background: Intratumor-resident bacteria represent an integral component of the tumor microenvironment (TME). Microbial dysbiosis, which refers to an imbalance in the bacterial composition and bacterial metabolic activities, plays an important role in regulating breast cancer development and progression. However, the impact of specific intratumor-resident bacteria on tumor progression and their underlying mechanisms remain elusive.

View Article and Find Full Text PDF

This study examines the origin and differentiation of stem-like CD8+ T cells that are essential for sustained T cell immunity in chronic viral infections and cancer and also play a key role in PD-1 directed immunotherapy. These PD-1+ TCF-1+ TOX+ stem-like CD8+ T cells, also referred to as precursors of exhausted T cells, have a distinct program that allows them to adapt to chronic antigen stimulation. Using the mouse model of chronic LCMV infection we found that virus specific stem-like CD8+ T cells are generated early (day 5) during chronic infection suggesting that this crucial fate commitment occurs irrespective of infection outcome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!