Drought is a major environmental stress limiting growth of perennial grasses in temperate regions. Plant drought tolerance is a complex trait that is controlled by multiple genes. Candidate gene association mapping provides a powerful tool for dissection of complex traits. Candidate gene association mapping of drought tolerance traits was conducted in 192 diverse perennial ryegrass (Lolium perenne L.) accessions from 43 countries. The panel showed significant variations in leaf wilting, leaf water content, canopy and air temperature difference, and chlorophyll fluorescence under well-watered and drought conditions across six environments. Analysis of 109 simple sequence repeat markers revealed five population structures in the mapping panel. A total of 2520 expression-based sequence readings were obtained for a set of candidate genes involved in antioxidant metabolism, dehydration, water movement across membranes, and signal transduction, from which 346 single nucleotide polymorphisms were identified. Significant associations were identified between a putative LpLEA3 encoding late embryogenesis abundant group 3 protein and a putative LpFeSOD encoding iron superoxide dismutase and leaf water content, as well as between a putative LpCyt Cu-ZnSOD encoding cytosolic copper-zinc superoxide dismutase and chlorophyll fluorescence under drought conditions. Four of these identified significantly associated single nucleotide polymorphisms from these three genes were also translated to amino acid substitutions in different genotypes. These results indicate that allelic variation in these genes may affect whole-plant response to drought stress in perennial ryegrass.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617828PMC
http://dx.doi.org/10.1093/jxb/ert018DOI Listing

Publication Analysis

Top Keywords

drought tolerance
12
perennial ryegrass
12
candidate genes
8
tolerance traits
8
diverse perennial
8
candidate gene
8
gene association
8
association mapping
8
leaf water
8
water content
8

Similar Publications

Rapid radiation of a plant lineage sheds light on the assembly of dry valley biomes.

Mol Biol Evol

January 2025

CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.

Southwest China is characterized by high plateaus, large mountain systems, and deeply incised dry valleys formed by major rivers and their tributaries. Despite the considerable attention given to alpine plant radiations in this region, the timing and mode of diversification of the numerous dry valley plant lineages remain unknown. To address this knowledge gap, we investigated the macroevolution of Isodon (Lamiaceae), a lineage commonly distributed in the dry valleys in southwest China and wetter areas of Asia and Africa.

View Article and Find Full Text PDF

Background: Arbuscular mycorrhizal (AM) fungi form a highly adaptable and versatile group of fungi found in natural and man-managed ecosystems. Effector secreted by AM fungi influence symbiotic relationship by modifying host cells, suppressing host defense and promoting infection to derive nutrients from the host. Here, we conducted a reference-based transcriptome sequencing of Funneliformis mosseae BR221 to enhance understanding on the molecular machinery involved in the establishment of interaction between host and AM fungi.

View Article and Find Full Text PDF

Maize ( L.) is a widely grown food crop around the world. Drought stress seriously affects the growth and development process of plants and causes serious damage to maize yield.

View Article and Find Full Text PDF

Silica-Activated Redox Signaling Confers Rice with Enhanced Drought Resilience and Grain Yield.

ACS Nano

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.

Under a changing climate, enhancing the drought resilience of crops is critical to maintaining agricultural production and reducing food insecurity. Here, we demonstrate that seed priming with amorphous silica (SiO) nanoparticles (NPs) (20 mg/L) accelerated seed germination speed, increased seedlings vigor, and promoted seedling growth of rice under polyethylene glycol (PEG)-mimicking drought conditions. An orthogonal approach was used to uncover the mechanisms of accelerated seed germination and enhanced drought tolerance, including electron paramagnetic resonance, Fourier transform infrared spectroscopy (FTIR), metabolomics, and transcriptomics.

View Article and Find Full Text PDF

Nuclear Factor Y (NF-Y) represents a group of transcription factors commonly present in higher eukaryotes, typically consisting of three subunits: NF-YA, NF-YB, and NF-YC. They play crucial roles in the embryonic development, photosynthesis, flowering, abiotic stress responses, and other essential processes in plants. To better understand the genome-wide NF-Y domain-containing proteins, the protein physicochemical properties, chromosomal localization, synteny, phylogenetic relationships, genomic structure, promoter -elements, and protein interaction network of NtNF-Ys in tobacco ( L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!