Pyridoxal 5'-phosphate (PLP) is a coenzyme synthesized by all forms of life. Relevant to the work reported here is the mechanism of the PLP-dependent threonine/serine dehydratases, which generate reactive enamine/imine intermediates that are converted to keto acids by members of the RidA family of enzymes. The RidA protein of Salmonella enterica serovar Typhimurium LT2 is the founding member of this broadly conserved family of proteins (formerly known as YjgF/YER057c/UK114). RidA proteins were recently shown to be enamine deaminases. Here we demonstrate the damaging potential of enamines in the absence of RidA proteins. Notably, S. enterica strains lacking RidA have decreased activity of the PLP-dependent transaminase B enzyme IlvE, an enzyme involved in branched-chain amino acid biosynthesis. We reconstituted the threonine/serine dehydratase (IlvA)-dependent inhibition of IlvE in vitro, show that the in vitro system reflects the mechanism of RidA function in vivo, and show that IlvE inhibition is prevented by RidA proteins from all domains of life. We conclude that 2-aminoacrylate (2AA) inhibition represents a new type of metabolic damage, and this finding provides an important physiological context for the role of the ubiquitous RidA family of enamine deaminases in preventing damage by 2AA. IMPORTANCE External stresses that disrupt metabolic components can perturb cellular functions and affect growth. A similar consequence is expected if endogenously generated metabolites are reactive and persist in the cellular environment. Here we show that the metabolic intermediate 2-aminoacrylate (2AA) causes significant cellular damage if allowed to accumulate aberrantly. Furthermore, we show that the widely conserved protein RidA prevents this accumulation by facilitating conversion of 2AA to a stable metabolite. This work demonstrates that the reactive metabolite 2AA, previously considered innocuous in the cell due to a short half-life in aqueous solution, can survive in the cellular environment long enough to cause damage. This work provides insights into the roles and persistence of reactive metabolites in vivo and shows that the RidA family of proteins is able to prevent damage caused by a reactive intermediate that is created as a consequence of PLP-dependent chemistry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3565831PMC
http://dx.doi.org/10.1128/mBio.00033-13DOI Listing

Publication Analysis

Top Keywords

rida proteins
16
rida family
12
rida
11
proteins prevent
8
metabolic damage
8
domains life
8
family proteins
8
enamine deaminases
8
2-aminoacrylate 2aa
8
cellular environment
8

Similar Publications

Identification of the Highly Polymorphic Prion Protein Gene () in Frogs ).

Animals (Basel)

January 2025

Department of Biological Sciences, Andong National University, Andong 36729, Republic of Korea.

Prion diseases are fatal neurodegenerative diseases that can be transmitted by infectious protein particles, PrPs, encoded by the endogenous prion protein gene (). The origin of prion seeds is unclear, especially in non-human hosts, and this identification is pivotal to preventing the spread of prion diseases from host animals. Recently, an abnormally high amyloid propensity in prion proteins (PrPs) was found in a frog, of which the genetic variations in the gene have not been investigated.

View Article and Find Full Text PDF

Aim: Pancreatic β-cells are susceptible to inflammation, leading to decreased insulin production/secretion and cell death. Previously, we have identified a novel triceps-derived myokine, DECORIN, which plays a pivotal role in skeletal muscle-to-pancreas interorgan communication. However, whether DECORIN can directly impact β-cell function and susceptibility to inflammation remains unexplored.

View Article and Find Full Text PDF

Unlocking Neuroinflammation: A Balanced Art for Therapeutics of Prion Disease.

ACS Chem Neurosci

January 2025

National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.

Neuroinflammation plays a dual role in prion diseases, contributing both to the clearance of misfolded scrapie-like prion protein and to neuropathology through chronic activation of inflammatory pathways. Key mechanisms, including M-CSF/CSF1R signaling, NLRP3 inflammasome activation, and the Galectin-3/TREM2 axis, etc., highlight the complexity of targeting neuroinflammation for therapeutic intervention.

View Article and Find Full Text PDF

Comparing the Extent of Methionine Oxidation in the Prion and Native Conformations of PrP.

ACS Omega

January 2025

CIMUS Biomedical Research Institute & Department of Medical Sciences, University of Santiago de Compostela-IDIS, Santiago de Compostela 15782, Spain.

Scrapie is a prion disease of sheep and goats. Prions (PrP) replicate by inducing a natively expressed protein (PrP) to refold into the prion conformation. PrP and PrP contain a disproportionately large number of methionines.

View Article and Find Full Text PDF

Background: Scrapie is an infectious prion disease in sheep. Selective breeding for resistant genotypes of the prion protein gene (PRNP) is an effective way to prevent scrapie outbreaks. Genotyping all selection candidates in a population is expensive but existing pedigree records can help infer the probabilities of genotypes in relatives of genotyped animals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!