Clostridium perfringens is an anaerobic bacterium that causes numerous important human and animal diseases, primarily as a result of its ability to produce many different protein toxins. In chickens, C. perfringens causes necrotic enteritis, a disease of economic importance to the worldwide poultry industry. The secreted pore-forming toxin NetB is a key virulence factor in the pathogenesis of avian necrotic enteritis and is similar to alpha-hemolysin, a β-barrel pore-forming toxin from Staphylococcus aureus. To address the molecular mechanisms underlying NetB-mediated tissue damage, we determined the crystal structure of the monomeric form of NetB to 1.8 Å. Structural comparisons with other members of the alpha-hemolysin family revealed significant differences in the conformation of the membrane binding domain. These data suggested that NetB may recognize different membrane receptors or use a different mechanism for membrane-protein interactions. Consistent with this idea, electrophysiological experiments with planar lipid bilayers revealed that NetB formed pores with much larger single-channel conductance than alpha-hemolysin. Channel conductance varied with phospholipid net charge. Furthermore, NetB differed in its ion selectivity, preferring cations over anions. Using hemolysis as a screen, we carried out a random-mutagenesis study that identified several residues that are critical for NetB-induced cell lysis. Mapping of these residues onto the crystal structure revealed that they were clustered in regions predicted to be required for oligomerization or membrane binding. Together these data provide an insight into the mechanism of NetB-mediated pore formation and will contribute to our understanding of the mode of action of this important toxin. IMPORTANCE Necrotic enteritis is an economically important disease of the worldwide poultry industry and is mediated by Clostridium perfringens strains that produce NetB, a β-pore-forming toxin. We carried out structural and functional studies of NetB to provide a mechanistic insight into its mode of action and to assist in the development of a necrotic enteritis vaccine. We determined the structure of the monomeric form of NetB to 1.8 Å, used both site-directed and random mutagenesis to identify key residues that are required for its biological activity, and analyzed pore formation by NetB and its substitution-containing derivatives in planar lipid bilayers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3565830 | PMC |
http://dx.doi.org/10.1128/mBio.00019-13 | DOI Listing |
Vet Sci
December 2024
Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Zakir Hossain Road, Khulshi, Chattogram 4225, Bangladesh.
Despite the significant growth in Sonali chicken production across Bangladesh, inadequate disease surveillance and control measures along with indiscriminate antimicrobial use remain major challenges to the sector. In this study, we evaluated the disease burden and antimicrobial prescription patterns of Sonali chickens in Bangladesh using a web-based data recording system from 2020 to 2021 and analyzed 1690 cases. The diagnoses recorded in the system were presumptive, as they were based on clinico-epidemiological history, clinical signs, and gross necropsy findings noted by registered veterinarians.
View Article and Find Full Text PDFPoult Sci
December 2024
State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China. Electronic address:
It is urgent to develop effective antibiotic alternatives for the control of subclinical necrotic enteritis (NE) in chickens after in-feed antibiotics have been banned. The current study investigated the efficacy of drinking water supplemented with essential oils and organic acids mixtures (EOA) on growth performance and intestinal health of broilers challenged with necrotic enteritis (NE). A total of 360 one-day-old Arbor Acres male broilers were randomly divided into 5 treatment groups, including non-challenged control group (T0), challenged NE group (T1), and challenged NE chickens treated with 0.
View Article and Find Full Text PDFPoult Sci
December 2024
MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA. Electronic address:
With increasing regulations restricting antibiotic use in animal feed, the need for alternative strategies to prevent and manage necrotic enteritis (NE) has become imperative. As a result, developing effective vaccines has emerged as a top priority for broiler chicken health management. Coccidial infections are a well-established predisposing factor for NE, underscoring the importance of controlling coccidiosis to help mitigate NE outbreaks.
View Article and Find Full Text PDFPoult Sci
December 2024
Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei City 106, Taiwan; Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, Taipei City, 106, Taiwan. Electronic address:
The pathogenesis of necrotic enteritis (NE) involves complex gene regulation at both the bacterial cell and host tissue levels, yet many aspects remain incompletely understood. This study aims to compare the differential transcriptome of the netB-positive Clostridium perfringens strain, CP54, before and after infection. Differentially expressed genes and pathways were also examined in jejunal tissues from CP54-induced and CP54-Eimeria coinfected NE models to identify potential targets for mitigating NE.
View Article and Find Full Text PDFJ Zoo Wildl Med
December 2024
San Diego Zoo Wildlife Alliance, San Diego, CA 92112, USA.
Yersiniosis due to can be associated with high morbidity and mortality in various species and has been a cosmopolitan management challenge in zoological institutions. This gram-negative, environmental bacterium thrives in cold, wet conditions and poses a risk to zoo species. Outbreaks can be costly and impact conservation efforts through loss of threatened and endangered species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!