Scope: Curcumin (CUR), demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC) have been demonstrated as having antioxidant, anticarcinogenic, and hypocholesterolemic activities. We report the diverse antiatherogenic effects and mechanisms of curcuminoids.

Methods And Results: We found that CUR was the most potent antioxidant against copper-mediated LDL oxidation as measured by thiobarbituric acid-reactive substances assay, oxidized LDL (oxLDL) ELISA, and electrophoretic mobility. CUR upregulated heme oxygenase-1, modifier subunit of glutamate-cysteine ligase (GCLM), and CD36 expression in undifferentiated THP-1 cells, supporting the possible involvement of Nrf2 pathway in CD36 expression. Monocyte-to-macrophage differentiation plays a vital role in early atherogenesis. BDMC reduced oxLDL uptake most effectively, while CUR was the best inhibitor for CD36, scavenger receptor A, and lectin-like oxidized LDL receptor-1 expression during phorbol 12-myristate 13-acetate (PMA)-induced THP-1 differentiation. In PMA-differentiated THP-1 macrophages, CUR and DMC effectively induced heme oxygenase-1 expression, but attenuated oxLDL-induced CD36 expression, leading to decreased oxLDL uptake.

Conclusion: This result indicates curcuminoids, despite structural similarities, exert different atheroprotective effects. Curcuminoids, especially CUR and DMC, are hormetic compounds, which induce Phase II enzyme expression and confer resistance to PMA- and oxLDL-induced scavenger receptor expression and activity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mnfr.201200227DOI Listing

Publication Analysis

Top Keywords

heme oxygenase-1
12
cd36 expression
12
expression
8
oxidized ldl
8
scavenger receptor
8
cur dmc
8
cur
6
curcuminoids distinctly
4
distinctly exhibit
4
exhibit antioxidant
4

Similar Publications

Heme oxygenase 1 (HO-1), an enzyme involved in heme catabolism, has been shown upregulated in microglia cells and plays a critical roles in neurological damages after intracerebral hemorrhage (ICH). However, the mechanisms by which HO-1 mediates the neuronal damages are still obscure. Here, our findings demonstrate that HO-1 over-expression exacerbates the pro-inflammatory response of microglia and induces neuronal ferroptosis through promoting intracellular iron deposition in the ICH model both in vitro and in vivo.

View Article and Find Full Text PDF

Iron overload (IO) was considered to be a risk factor for cartilage degradation in knee osteoarthritis (KOA) advancement. However, few drugs were found to improve cartilage degeneration by alleviating multiple cell death induced by the impaired iron level of the knee joints. We aimed to elucidate that Arctiin (ARC) plays a role in managing KOA caused by accumulated iron levels by restoring chondrocyte apoptosis and ferroptosis.

View Article and Find Full Text PDF

Objective: Ferroptosis has been described in association with acute kidney injury (AKI)-induced sepsis. Fibronectin type III domain containing protein 5 (FNDC5)/irisin plays a crucial role in renal protection. The objective of this study was to investigate whether FNDC5/irisin is involved in AKI-induced sepsis by modulating ferroptosis, and the molecular mechanisms that may be involved.

View Article and Find Full Text PDF

New low-dose curcumin derivative with therapeutic potential in Alzheimer's disease: Results from an in vitro and in vivo study in mice.

Neurobiol Aging

December 2024

Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Centro Clínico e Académico de Coimbra, Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Coimbra Institute of Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.

Curcumin has been proposed as a potential treatment for Alzheimer's disease (AD) due to its ability to inhibit amyloid-β (Aβ) peptide aggregates and to destabilise pre-formed ones. Derivative 27 was synthesized to improve low-dose efficacy in the context of AD. Its anti-inflammatory, antioxidant and anti-amyloidogenic activities were evaluated in chemico, in vitro using AD and neuroinflammation cell models, and in vivo using the double-transgenic APP/PS1 mice.

View Article and Find Full Text PDF

HMOX1-LDHB interaction promotes ferroptosis by inducing mitochondrial dysfunction in foamy macrophages during advanced atherosclerosis.

Dev Cell

December 2024

Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Heilongjiang Provincial Key Laboratory of Panvascular Disease, Harbin 150086, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150081, China; State Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin 150080, China. Electronic address:

Advanced atherosclerosis is the pathological basis for acute cardiovascular events, with significant residual risk of recurrent clinical events despite contemporary treatment. The death of foamy macrophages is a main contributor to plaque progression, but the underlying mechanisms remain unclear. Bulk and single-cell RNA sequencing demonstrated that massive iron accumulation in advanced atherosclerosis promoted foamy macrophage ferroptosis, particularly in low expression of triggering receptor expressed on myeloid cells 2 (TREM2) foamy macrophages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!