The developing fetal brain is vulnerable to a variety of environmental agents including maternal ethanol consumption. Preclinical studies on the development and amelioration of fetal teratology would be significantly facilitated by the application of high resolution imaging technologies like optical coherence tomography (OCT) and high-frequency ultrasound (US). This study investigates the ability of these imaging technologies to measure the effects of maternal ethanol exposure on brain development, ex vivo, in fetal mice. Pregnant mice at gestational day 12.5 were administered ethanol (3 g/Kg b.wt.) or water by intragastric gavage, twice daily for three consecutive days. On gestational day 14.5, fetuses were collected and imaged. Three-dimensional images of the mice fetus brains were obtained by OCT and high-resolution US, and the volumes of the left and right ventricles of the brain were measured. Ethanol-exposed fetuses exhibited a statistically significant, 2-fold increase in average left and right ventricular volumes compared with the ventricular volume of control fetuses, with OCT-derived measures of 0.38 and 0.18 mm3, respectively, whereas the boundaries of the fetal mouse lateral ventricles were not clearly definable with US imaging. Our results indicate that OCT is a useful technology for assessing ventriculomegaly accompanying alcohol-induced developmental delay. This study clearly demonstrated advantages of using OCT for quantitative assessment of embryonic development compared with US imaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3563965PMC
http://dx.doi.org/10.1117/1.JBO.18.2.020506DOI Listing

Publication Analysis

Top Keywords

fetal brain
8
brain development
8
optical coherence
8
coherence tomography
8
maternal ethanol
8
imaging technologies
8
gestational day
8
fetal
5
imaging
5
comparative assessments
4

Similar Publications

[Recommendations for clinical practice: Prevention and management of varicella zoster virus (VZV) infection during pregnancy and the perinatal period (extended version)].

Gynecol Obstet Fertil Senol

January 2025

Division of Virology, WHO Rubella National Reference Laboratory, Paris Saclay University Hospital, APHP, Paris, France; Université Paris-Saclay, INSERM U1184, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France.

The Société de Pathologie Infectieuse de Langue Française released in 2024 a new national recommendation for clinical practice on the prevention and management of varicella zoster virus (VZV) infection during pregnancy and the perinatal period. The previous recommendation was issued in 1998, at a time of anti-VZV immunoglobulins shortage; it has hence become obsolete. This recommendation is a formalized expert consensus focusing on infectious diseases management; it is drawn up by a multidisciplinary working group (infectiologists, obstetricians, pediatricians, microbiologists, midwives, hygienists).

View Article and Find Full Text PDF

Dermatologists have been interested in recent advancements in regenerative therapy. Current research is actively investigating the possibility of placental tissue derivatives to decelerate the skin aging process, enhance skin regeneration, reduce scarring, and prevent hair loss. Amniotic membranes (AM) play a crucial role in regenerative medicine as they serve as a suitable means of transporting stem cells, growth hormones, cytokines, and other essential compounds.

View Article and Find Full Text PDF

The fetal brain is susceptible to programming effects during pregnancy, potentially leading to long-term consequences for offspring's cognitive health. Fructose intake is thought to adversely affect fetal brain development, whereas physical exercise before and during pregnancy may be protective. Therefore, this study aimed to assess biochemical and genotoxic changes in maternal hippocampi and behavioral, genotoxic, and biochemical alterations in offspring hippocampi.

View Article and Find Full Text PDF

Glioblastoma Multiforme (GBM) is the most prevalent and highly malignant form of adult brain cancer characterized by poor overall survival rates. Effective therapeutic modalities remain limited, necessitating the search for novel treatments. Neurodevelopmental pathways have been implicated in glioma formation, with key neurodevelopmental regulators being re- expressed or co-opted during glioma tumorigenesis.

View Article and Find Full Text PDF

Introduction: The severity of virally induced prenatal brain injury, even among dizygotic twins, varies according to individual and maternal risk and protective factors, including genomics.

Objective: This scoping review aims to analyze data on genetic susceptibility to neurological outcomes in children exposed in utero to Zika virus.

Methods: We followed JBI methodology for this scoping review.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!