Metabolic phenotyping for the classification of coffee trees and the exploration of selection markers.

Mol Biosyst

Department of Biotechnology and Biochemistry, CINVESTAV Unidad Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, 36821 Irapuato Gto., Mexico.

Published: April 2013

High-throughput metabolic phenotyping is a challenge, but it provides an alternative and comprehensive access to the rapid and accurate characterization of plants. In addition to the technical issues of obtaining quantitative data of plenty of metabolic traits from numerous samples, a suitable data processing and statistical evaluation strategy must be developed. We present a simple, robust and highly scalable strategy for the comparison of multiple chemical profiles from coffee and tea leaf extracts, based on direct-injection electrospray mass spectrometry (DIESI-MS) and hierarchical cluster analysis (HCA). More than 3500 individual Coffea canephora and Coffea arabica trees from experimental fields in Mexico were sampled and processed using this method. Our strategy permits the classification of trees according to their metabolic fingerprints and the screening for families with desired characteristics, such as extraordinarily high or low caffeine content in their leaves.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3mb25509cDOI Listing

Publication Analysis

Top Keywords

metabolic phenotyping
8
metabolic
4
phenotyping classification
4
classification coffee
4
coffee trees
4
trees exploration
4
exploration selection
4
selection markers
4
markers high-throughput
4
high-throughput metabolic
4

Similar Publications

We aimed to build a robust classifier for the MGMT methylation status of glioblastoma in multiparametric MRI. We focused on multi-habitat deep image descriptors as our basic focus. A subset of the BRATS 2021 MGMT methylation dataset containing both MGMT class labels and segmentation masks was used.

View Article and Find Full Text PDF

There are few in vitro models available to study microglial physiology in a homeostatic context. Recent approaches include the human induced pluripotent stem cell model, but these can be challenging for large-scale assays and may lead to batch variability. To advance our understanding of microglial biology while enabling scalability for high-throughput assays, we developed an inducible immortalized murine microglial cell line using a tetracycline expression system.

View Article and Find Full Text PDF

Multidrug resistance in the pathogenic fungus Candida glabrata is a growing global threat. Here, we study mechanisms of multidrug resistance in this pathogen. Exposure of C.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is linked to ion channel dysfunction, including chloride voltage-gated channel-4 (CLCN4). We generated Clcn4 knockout (KO) mice by deleting exon 5 of chromosome 7 in the C57BL/6 mice. Clcn4 KO exhibited reduced social interaction and increased repetitive behaviors assessed using three-chamber and marble burying tests.

View Article and Find Full Text PDF

Single-point mutations are pivotal in molecular zoology, shaping functions and influencing genetic diversity and evolution. Here we study three such genetic variants of a mechano-responsive protein, cadherin-23, that uphold the structural integrity of the protein, but showcase distinct genotypes and phenotypes. The variants exhibit subtle differences in transient intra-domain interactions, which in turn affect the anti-correlated motions among the constituent β-strands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!