Type I plant nucleases play an important role in apoptotic processes and cell senescence. Recently, they have also been indicated to be potent anticancer agents in in vivo studies. The first structure of tomato nuclease I (TBN1) has been determined, its oligomerization and activity profiles have been analyzed and its unexpected activity towards phospholipids has been discovered, and conclusions are drawn regarding its catalytic mechanism. The structure-solution process required X-ray diffraction data from two crystal forms. The first form was used for phase determination; the second form was used for model building and refinement. TBN1 is mainly α-helical and is stabilized by four disulfide bridges. Three observed oligosaccharides are crucial for its stability and solubility. The active site is localized at the bottom of the positively charged groove and contains a zinc cluster that is essential for enzymatic activity. An equilibrium between monomers, dimers and higher oligomers of TBN1 was observed in solution. Principles of the reaction mechanism of the phosphodiesterase activity are suggested, with central roles for the zinc cluster, the nucleobase-binding pocket (Phe-site) and Asp70, Arg73 and Asn167. Based on the distribution of surface residues, possible binding sites for dsDNA and other nucleic acids with secondary structure were identified. The phospholipase activity of TBN1, which is reported for the first time for a nuclease, significantly broadens the substrate promiscuity of the enzyme, and the resulting release of diacylglycerol, which is an important second messenger, can be related to the role of TBN1 in apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1107/S0907444912043697DOI Listing

Publication Analysis

Top Keywords

nuclease tbn1
8
phospholipase activity
8
zinc cluster
8
tbn1
6
activity
6
plant multifunctional
4
multifunctional nuclease
4
tbn1 unexpected
4
unexpected phospholipase
4
activity structural
4

Similar Publications

A unique analysis of an enzyme activity versus structure modification of the tomato nuclease R-TBN1 is presented. R-TBN1, the non-specific nuclease belonging to the S1-P1 nuclease family, was recombinantly produced in N. benthamiana.

View Article and Find Full Text PDF
Article Synopsis
  • Tomato multifunctional nuclease TBN1 is part of the type I nuclease family and is crucial for processes like apoptosis and cell aging in plants.
  • The newly analyzed N211D mutant structure reveals differences in packing compared to other known structures, despite a conserved superhelical arrangement.
  • A phosphate ion found at the enzyme's active site stabilizes the interaction between a surface loop and the active center, indicating its possible role in regulatory functions or oligomer formation.
View Article and Find Full Text PDF

Type I plant nucleases play an important role in apoptotic processes and cell senescence. Recently, they have also been indicated to be potent anticancer agents in in vivo studies. The first structure of tomato nuclease I (TBN1) has been determined, its oligomerization and activity profiles have been analyzed and its unexpected activity towards phospholipids has been discovered, and conclusions are drawn regarding its catalytic mechanism.

View Article and Find Full Text PDF

Biochemical properties of three plant nucleases with anticancer potential.

Plant Sci

February 2011

Institute of Chemical Technology Prague, Technická 3, 166 28 Prague, Czech Republic; Biology Centre, ASCR v.v.i., Institute of Plant Molecular Biology, Branišovská 32, 37005 České Budějovice, Czech Republic.

Biochemical and structural properties of three recombinant (R), highly homologous, plant bifunctional nucleases from tomato (R-TBN1), hop (R-HBN1) and Arabis brassica (R-ABN1) were determined. These nucleases cleave single- and double-stranded substrates, as well as both RNA and DNA with nearly the same efficiency. In addition, they are able to cleave several artificial substrates and highly stable viroid RNA.

View Article and Find Full Text PDF

Crystallization of recombinant bifunctional nuclease TBN1 from tomato.

Acta Crystallogr Sect F Struct Biol Cryst Commun

January 2011

Institute of Physics AS CR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic.

The endonuclease TBN1 from Solanum lycopersicum (tomato) was expressed in Nicotiana benthamiana leaves and purified with suitable quality and in suitable quantities for crystallization experiments. Two crystal forms (orthorhombic and rhombohedral) were obtained and X-ray diffraction experiments were performed. The presence of natively bound Zn2+ ions was confirmed by X-ray fluorescence and by an absorption-edge scan.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!