Lung stress and strain during mechanical ventilation: any difference between statics and dynamics?

Crit Care Med

Dipartimento di Anestesiologia, Terapia Intensiva e Scienze Dermatologiche, Università degli Studi di Milano, Centro di Ricerche Chirurgiche Precliniche, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan Italy.

Published: April 2013

Objective: Tidal volume (VT) and volume of gas caused by positive end-expiratory pressure (VPEEP) generate dynamic and static lung strains, respectively. Our aim was to clarify whether different combinations of dynamic and static strains, resulting in the same large global strain, constantly produce lung edema.

Design: Laboratory investigation.

Setting: Animal unit.

Subjects: Twenty-eight healthy pigs.

Interventions: After lung computed tomography, 20 animals were ventilated for 54 hours at a global strain of 2.5, either entirely dynamic (VT 100% and VPEEP 0%), partly dynamic and partly static (VT 75-50% and VPEEP 25-50%), or mainly static (VT 25% and VPEEP 75%) and then killed. In eight other pigs (VT 25% and VPEEP 75%), VPEEP was abruptly zeroed after 36-54 hours and ventilation continued for 3 hours.

Measurements And Main Results: Edema was diagnosed when final lung weight (balance) exceeded the initial weight (computed tomography). Mortality, lung mechanics, gas exchange, pulmonary histology, and inflammation were evaluated. All animals ventilated with entirely dynamic strain (VT 825±424 mL) developed pulmonary edema (lung weight from 334±38 to 658±99 g, p<0.01), whereas none of those ventilated with mainly static strain (VT 237±21 mL and VPEEP 906±114 mL, corresponding to 19±1 cm H2O of positive end-expiratory pressure) did (from 314±55 to 277±46 g, p=0.65). Animals ventilated with intermediate combinations finally had normal or largely increased lung weight. Smaller dynamic and larger static strains lowered mortality (p<0.01), derangement of lung mechanics (p<0.01), and arterial oxygenation (p<0.01), histological injury score (p=0.03), and bronchoalveolar interleukin-6 concentration (p<0.01). Removal of positive end-expiratory pressure did not result in abrupt increase in lung weight (from 336±36 to 351±77 g, p=0.51).

Conclusions: Lung edema forms (possibly as an all-or-none response) depending not only on global strain but also on its components. Large static are less harmful than large dynamic strains, but not because the former merely counteracts fluid extravasation.

Download full-text PDF

Source
http://dx.doi.org/10.1097/CCM.0b013e31827417a6DOI Listing

Publication Analysis

Top Keywords

dynamic static
8
global strain
8
computed tomography
8
animals ventilated
8
entirely dynamic
8
25% vpeep
8
vpeep 75%
8
lung weight
8
lung
7
vpeep
6

Similar Publications

Dynamic Navigation in Dental Implantology.

Discoveries (Craiova)

December 2023

Periodontics Division, Department of Dentistry, All India Institute of Medical Sciences, Bathinda, Punjab, India.

Implant placement for dental rehabilitation has gained more popularity among patients in the recent past. Dental Implants are the workhorse of dentistry. Previously, the implants were placed with the help of the traditional freehand approach.

View Article and Find Full Text PDF

ssDNA Capture Dynamics by Graphene Nanopores: The Role of Electrophoresis and Electro-osmotic Flow.

J Phys Chem Lett

January 2025

School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.

Efficient capture of single-stranded DNA (ssDNA) is crucial for high-throughput sequencing, which influences the speed and accuracy of genetic analysis. Electrophoresis (EP) and electro-osmotic flow (EOF) have a significant impact on the translocation behavior of ssDNA through the nanopore. Experimentally, dynamically tracking these two effects remains challenging, and conventional numerical methods also struggle to capture their dynamic properties in the presence of DNA.

View Article and Find Full Text PDF

Dynamic biomechanical effects of medial meniscus tears on the knee joint: a finite element analysis.

J Orthop Surg Res

January 2025

Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.

Background: Meniscus tears can change the biomechanical environment of the knee joint and might accelerate the development of osteoarthritis. The aim of this study was to investigate the dynamic biomechanical effects of different medial meniscus tear positions and tear gaps on the knee during walking.

Methods: Seven finite element models of the knee joint were constructed, including the intact medial meniscus (IMM), radial stable tears in the anterior, middle, and posterior one-third regions of the medial meniscus (RSTA, RSTM, RSTP), and the corresponding unstable tears (RUTA, RUTM, RUTP).

View Article and Find Full Text PDF

Preoperative Assessment of the Nasal Valve.

Otolaryngol Clin North Am

January 2025

Division of Facial Plastics and Reconstructive Surgery, University of South Florida, Tampa, FL, USA. Electronic address:

Nasal obstruction is often a multifactorial problem, attributable to physiologic and anatomic processes. Nasal valve compromise may be static or dynamic in nature. Successful diagnostic evaluation rests on a comprehensive history and physical examination.

View Article and Find Full Text PDF

Computer-guided full-arch dental rehabilitation, which is highly technique-sensitive, benefits from advancements in 3-dimensional-printed guides and open-source software. Critical pre-surgical planning includes patient selection, health history evaluations, and detailed imaging like cone beam computed tomography scans. Various surgical guides-freehand, static, dynamic, stackable, and interchangeable-are used based on case complexity, with stackable guides improving workflow efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!