We investigated adjustments of control to initial posture in squat jumping. Eleven male subjects jumped from three initial postures: preferred initial posture (PP), a posture in which the trunk was rotated 18° more backward (BP) and a posture in which it was rotated 15° more forward (FP) than in PP. Kinematics, ground reaction forces and electromyograms (EMG) were collected. EMG was rectified and smoothed to obtain smoothed rectified EMG (srEMG). Subjects showed adjustments in srEMG histories, most conspicuously a shift in srEMG-onset of rectus femoris (REC): from early in BP to late in FP. Jumps from the subjects' initial postures were simulated with a musculoskeletal model comprising four segments and six Hill-type muscles, which had muscle stimulation (STIM) over time as input. STIM of each muscle changed from initial to maximal at STIM-onset, and STIM-onsets were optimized using jump height as criterion. Optimal simulated jumps from BP, PP and FP were similar to jumps of the subjects. Optimal solutions primarily differed in STIM-onset of REC: from early in BP to late in FP. Because the subjects' adjustments in srEMG-onsets were similar to adjustments of the model's optimal STIM-onsets, it was concluded that the former were near-optimal. With the model we also showed that near-maximum jumps from BP, PP and FP could be achieved when STIM-onset of REC depended on initial hip joint angle and STIM-onsets of the other muscles were posture-independent. A control theory that relies on a mapping from initial posture to STIM-onsets seems a parsimonious alternative to theories relying on internal optimal control models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroscience.2013.01.055 | DOI Listing |
BMC Nurs
December 2024
Department of Sport Science and Sport, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
Background: The physical demands of nurses during their work and education are high. In addition, shortage in nursing staff increases the individual workload. However, an appropriate tool to measure perceived physical exertion in nursing students is missing.
View Article and Find Full Text PDFEur J Med Res
December 2024
Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, No.1279 Sanmen Road, Hongkou District, Shanghai, China.
Objectives: Our aim is to investigate the effects of a innovative modular prone positioning tools on patients with acute respiratory distress syndrome (ARDS) caused by COVID-19 during awake prone positioning (AW-PP).
Methods: This prospective randomized controlled study initially enrolled 168 patients with COVID-19 due to ARDS. However, 92 were subsequently disqualified, leaving 76 patients who were randomly assigned to either the observation group (n = 38) or the control group (n = 38).
Gait initiation is a fundamental human task, requiring one or more anticipatory postural adjustments (APA) prior to stepping. Deviations in amplitude and timing of APAs exist in Parkinson's disease (PD), causing dysfunctional postural control which increases the risk of falls. The motor cortex and basal ganglia have been implicated in the regulation of postural control, however, their dynamics during gait initiation, relationship to APA metrics, and response to pharmacotherapy such as levodopa are unknown.
View Article and Find Full Text PDFClin Pract Cases Emerg Med
November 2024
Desert Care Network, Section Gastroenterology, Coachella Valley, California.
Introduction: An attempt at medical management is often the initial step in addressing esophageal obstruction from an impacted food bolus. Medical management, however, has limited success and often requires urgent endoscopy. We present a case in which standard medical treatment failed, but a swallowing augmentation maneuver resolved the obstruction.
View Article and Find Full Text PDFFront Vet Sci
December 2024
Department of Biology, The University of Akron, Akron, OH, United States.
Introduction: During agility performance, dogs complete a preset obstacle course. The teeter, also known as the seesaw, is the only dynamic contact obstacle. Dogs handle dynamic obstacles differently than static obstacles due to the need for increased coordination and postural control.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!