This study was carried out to investigate the effects of bamboo charcoal and bamboo vinegar as alternatives of antibiotics in the diet of fattening pigs and their influence on growth performance, immune responses and fecal microflora populations. Crossed pigs (n = 144, 79 kg body weight) were divided into 12 heads per pen, four diets and three replications. The basal diet (negative control: NC) was supplemented with 0.3% antibiotics (positive control: PC), 0.3% bamboo charcoal (BC) and 0.3% bamboo vinegar (BV). Average daily weight gain and feed efficiency were higher (P < 0.05) in PC, BC and BV. The concentration of lactate dehydrogenase and cortisol were lower (P < 0.05), but the concentration of immunoglobulin G (IgG) and IgA were higher (P < 0.05) in PC, BC and BV. Counts of coliform bacteria and Salmonella spp. were lower (P < 0.05), while the counts of fecal anaerobic total bacteria and lactic acid bacteria were higher (P < 0.05) in PC, BC and BV. A reasonable inclusion of bamboo charcoal or bamboo vinegar as antibiotics in the diet of fattening pigs leads to a better growth performance, immune responses and fecal microflora populations. The results of the present study suggest that bamboo charcoal or bamboo vinegar could be a potential additives in animal production as an alternative to antibiotics.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1740-0929.2012.01045.xDOI Listing

Publication Analysis

Top Keywords

bamboo charcoal
20
bamboo vinegar
20
charcoal bamboo
16
growth performance
12
performance immune
12
immune responses
12
responses fecal
12
fecal microflora
12
fattening pigs
12
higher 005
12

Similar Publications

Biogas upgrading using aqueous bamboo-derived activated carbons.

Bioresour Technol

January 2025

Energy Engineering, Division of Energy Science, Luleå University of Technology, Luleå 97187, Sweden. Electronic address:

CO/CH separation is crucial for biogas upgrading. In this study, the bamboo-derived activated carbons (BACs) were prepared with different ratios of potassium hydroxide (KOH)/bamboo charcoal (BC), and the hybrid sorbents of aqueous BACs were developed for CO/CH separation. Both the gas solubility and sorption rate were measured, and Henry's constant and liquid-side mass-transfer coefficient as well as the CO/CH selectivity were calculated.

View Article and Find Full Text PDF

Guadua angustifolia biochar/TiO composite and biochar as bio-based materials with environmental and agricultural application.

Sci Rep

January 2025

Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110‑23, Bogotá, DC, Colombia.

Globally, the companies that make commercial use of bamboo culms produce different kinds of solid waste rich in lignocellulosic biomass, which in some cases is not used and is discarded in landfills or incinerated in the open air; losing the possibility of recovering them and using them in other productive sectors. The research objective were to produce a biochar from Guadua agustifolia  Kunth sawdust, evaluate its potential environmental and agricultural use, obtain a biochar/TiO  composite to inactivate Escherichia coli and use the biochar as a soil conditioner in medicinal plants producing phenolic compounds and flavonoids. Biochar composite (produced at 300 °C for 1 h) involved TiO at 450 °C for 1 h for inactivation of E.

View Article and Find Full Text PDF

Residual effects of biochar and nano-modified biochar on growth and physiology under saline environment in two different genotype of Oryza sativa L.

J Environ Manage

January 2025

School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China. Electronic address:

Soil salinity is represent a significant environmental stressor that profoundly impairs crop productivity by disrupting plant physiological functions. To mitigate this issue, the combined application of biochar and nanoparticles has emerged as a promising strategy to enhance plant salt tolerance. However, the long-term residual effects of this approach on cereal crops remain unclear.

View Article and Find Full Text PDF

Construction of Fe and g-CN codoped magnetic bamboo charcoal for enhanced catalytic degradation of tetracycline: Mechanism, degradation pathway, and ecological toxicity.

Environ Res

December 2024

Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming, 650224, PR China; College of Materials and Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China. Electronic address:

The well-designed bamboo charcoal (BC) composite Fe-g-CN/BC with multi-active sites of FeO, FeN, and g-CN, was fabricated in-situ by calcining Fe-melamine loaded bamboo charcoal (Fe-Me-BC) under nitrogen atmosphere. The as-synthesized Fe-g-CN/BC(550) exhibited a mesoporous structure with a large specific surface area of 108.23 m/g.

View Article and Find Full Text PDF
Article Synopsis
  • Biochar, specifically bamboo biochar, is produced from bamboo straw through pyrolysis, which involves heating organic material without oxygen, and it's being studied for its potential benefits in tea garden soils.
  • The study found that adding bamboo biochar improved important soil properties, significantly increasing nutrients like nitrogen and phosphorus while enhancing microbial diversity and enzyme activity, but reducing soil acid phosphatase activity.
  • Results suggest that bamboo biochar can positively impact soil health, paving the way for further research in ecological restoration of tea garden soils.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!