Nitric oxide blocks blue light-induced K+ influx by elevating the cytosolic Ca2+ concentration in Vicia faba L. guard cells.

J Integr Plant Biol

Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, College of Life Sciences, Henan University, Kaifeng 475004, China.

Published: June 2013

Ca(2+) plays a pivotal role in nitric oxide (NO)-promoted stomatal closure. However, the function of Ca(2+) in NO inhibition of blue light (BL)-induced stomatal opening remains largely unknown. Here, we analyzed the role of Ca(2+) in the crosstalk between BL and NO signaling in Vicia faba L. guard cells. Extracellular Ca(2+) modulated the BL-induced stomatal opening in a dose-dependent manner, and an application of 5 μM Ca(2+) in the pipette solution significantly inhibited BL-activated K(+) influx. Sodium nitroprusside (SNP), a NO donor, showed little effect on BL-induced K(+) influx and stomatal opening response in the absence of extracellular Ca(2+), but K(+) influx and stomatal opening were inhibited by SNP when Ca(2+) was added to the bath solution. Interestingly, although both SNP and BL could activate the plasma membrane Ca(2+) channels and induce the rise of cytosolic Ca(2+), the change in levels of Ca(2+) channel activity and cytosolic Ca(2+) concentration were different between SNP and BL treatments. SNP at 100 μM obviously activated the plasma membrane Ca(2+) channels and induced cytosolic Ca(2+) rise by 102.4%. In contrast, a BL pulse (100 μmol/m(2) per s for 30 s) slightly activated the Ca(2+) channels and resulted in a Ca(2+) rise of only 20.8%. Consistently, cytosolic Ca(2+) promoted K(+) influx at 0.5 μM or below, and significantly inhibited K(+) influx at 5 μM or above. Taken together, our findings indicate that Ca(2+) plays dual and distinctive roles in the crosstalk between BL and NO signaling in guard cells, mediating both the BL-induced K(+) influx as an activator at a lower concentration and the NO-blocked K(+) influx as an inhibitor at a higher concentration.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jipb.12038DOI Listing

Publication Analysis

Top Keywords

cytosolic ca2+
20
ca2+
18
stomatal opening
16
guard cells
12
ca2+ channels
12
nitric oxide
8
influx
8
ca2+ concentration
8
vicia faba
8
faba guard
8

Similar Publications

Objectives: Mitochondrial Ca uniporter (MCU) provides a Ca influx pathway from the cytosol into the mitochondrial matrix and a moderate mitochondrial Ca rise stimulates ATP production and cell growth. MCU is highly expressed in various cancer cells including breast cancer cells, thereby increasing the capacity of mitochondrial Ca uptake, ATP production, and cancer cell proliferation. The objective of this study was to examine MCU inhibition as an anti-cancer mechanism.

View Article and Find Full Text PDF

Sarcoplasmic/endoplasmic reticulum Ca-ATPase1 (SERCA1) is responsible for the clearance of cytosolic Ca in skeletal muscle. Due to its vital importance in regulating Ca homeostasis, the regulation of SERCA1 has been intensively studied. Small ankyrin 1 (sAnk1, Ank1.

View Article and Find Full Text PDF

Calreticulin (CRT) is a 46 kDa highly conserved protein initially identified as calregulin, a prominent Ca-binding protein of the endoplasmic reticulum (ER). Subsequent studies have established that CRT functions in the ER's protein folding response and Ca homeostatic mechanisms. An ER retention signal on the carboxyl terminus of CRT suggested that CRT was restricted to the ER.

View Article and Find Full Text PDF

Calcium (Ca)-dependent signalling plays a well-characterised role in the perception and response mechanisms to environmental stimuli in plant cells. In the context of a constantly changing environment, it is fundamental to understand how crop yield and microalgal biomass productivity are affected by external factors. Ca signalling is known to be important in different physiological processes in microalgae but many of these signal transduction pathways still need to be characterised.

View Article and Find Full Text PDF

As an abiotic stress factor, salinity significantly affects the physiological activities of crustaceans. In this study, transcriptome sequencing was used to evaluate the mechanism of ion transport and the physiological response of black tiger shrimp (Penaeus monodon) under low salt stress. Four hundred post larval (PL) stage P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!