We propose a microscopic physical mechanism that stabilizes the coexistence of the Kondo effect and antiferromagnetism in heavy-fermion systems. We consider a two-dimensional quantum Kondo-Heisenberg lattice model and show that long-range electron hopping leads to a robust antiferromagnetic Kondo state. By using a modified slave-boson mean-field approach we analyze the stability of the heavy antiferromagnetic phase across a range of parameters, and discuss transitions between different phases. Our results may be used to guide future experiments on heavy fermion compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.110.026403 | DOI Listing |
Environ Geochem Health
December 2024
School of Earth Sciences, East China University of Technology, Nanchang, 330013, China.
In this paper, sediment samples from the HT and QS profiles of the Ganjiang River are selected to represent the river reach that does not enter and entered the Nanchang City urban area, respectively. Environmental magnetism, granulometry, and heavy metal of these samples were analyzed to assess the relationship between magnetic properties and heavy metal. The results showed that the mean χ value of QS profile is 20.
View Article and Find Full Text PDFNat Commun
November 2024
Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan.
Antiferromagnetic magnons possess a distinctive feature absent in their ferromagnetic counterparts: the presence of two distinct handedness modes, the right-handed (RH) and left-handed (LH) precession modes. The magnon handedness determines the sign of spin polarization carried by the propagating magnon, which is indispensable for harnessing the diverse functionalities in magnonic devices, such as data encoding, magnon polarization-based logic systems, and quantum applications involving magnons. However, the control of coherently propagating magnon handedness in antiferromagnets has remained elusive.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan.
Spin transport and the associated spin torque effects in antiferromagnets (AFMs) are scientifically interesting but have remained elusive due to the varied observations of spin transport in AFMs. This study revisits the role of a global Néel order in nickel oxide (NiO) facilitated through a spin-orbit torque (SOT) and examines the enhanced SOT efficiency in a heavy metal (W)/AFM (NiO)/ferromagnet (FM, CoFeB) trilayer with varying NiO thicknesses ranging from 1 to 5 nm. At the as-grown state, the Néel order of NiO is randomly oriented due to the polycrystalline nature of the film structure, leading to increased spin absorption and blocking spin transport from the adjacent W layer.
View Article and Find Full Text PDFACS Nano
November 2024
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
Recently, theoretical and experimental research predicted that ferromagnets with strong spin-orbit coupling (SOC) could serve as spin sources with dramatically enhanced spin-orbit torque (SOT) efficiency due to the combination of spin Hall effect and anomalous Hall effect (AHE), presenting potential advantages over conventional nonmagnetic heavy metals. However, materials with a strong SOC and room-temperature ferromagnetism are rare. Here, we report on a ferromagnetic (FM) interfacial phase with Curie temperature exceeding 300 K in the heavy transition-metal oxide CaRuO, in proximity to LaSrMnO.
View Article and Find Full Text PDFJ Phys Condens Matter
November 2024
Institut für Physik, Martin-Luther Universität Halle-Wittenberg, D-06099 Halle, Germany.
Monolayer jacutingaite (PtHgSe) exhibits remarkable properties, including significant spin-orbit coupling (SOC) and a tunable band gap, attributed to its buckled honeycomb geometry and the presence of heavy atoms. In this study, we explore the spin- and valley-dependent anomalous Nernst effect (ANE) in jacutingaite under the influence of a vertical electric field, off-resonance circularly polarized light (OCPL), and an antiferromagnetic exchange field. Our findings, within the low-energy approximation, reveal the emergence of a perfectly spin-polarized ANE with the application of appropriate OCPL and a perfectly valley-polarized ANE under an antiferromagnetic exchange field.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!