Background: This paper provides some clarifications regarding the use of model-fitting methods of kinetic analysis for estimating the activation energy of a process, in response to some results recently published in Chemistry Central journal.
Findings: The model fitting methods of Arrhenius and Savata are used to determine the activation energy of a single simulated curve. It is shown that most kinetic models correctly fit the data, each providing a different value for the activation energy. Therefore it is not really possible to determine the correct activation energy from a single non-isothermal curve. On the other hand, when a set of curves are recorded under different heating schedules are used, the correct kinetic parameters can be clearly discerned.
Conclusions: Here, it is shown that the activation energy and the kinetic model cannot be unambiguously determined from a single experimental curve recorded under non isothermal conditions. Thus, the use of a set of curves recorded under different heating schedules is mandatory if model-fitting methods are employed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3598870 | PMC |
http://dx.doi.org/10.1186/1752-153X-7-25 | DOI Listing |
Curr Med Chem
January 2025
Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
Background: Breast cancer is a frequently diagnosed malignant disease and the primary cause of mortality among women with cancer worldwide. The therapy options are influenced by the molecular subtype due to the intricate nature of the condition, which consists of various subtypes. By focusing on the activation of receptors, Epidermal Growth Factor Receptor (EGFR) tyrosine kinase can be utilized as an effective drug target for therapeutic purposes of breast cancer.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Department of Chemistry, Rice University, Houston, Texas 77005-1892, United States.
Generalized Hartree-Fock (GHF) is a long-established electronic structure method that can lower the energy (compared to spin-restricted variants) by breaking physical wave function symmetries, namely and . After an exposition of GHF theory, we assess the use of GHF trial wave functions in phaseless auxiliary field quantum Monte Carlo (ph-AFQMC-G) calculations of strongly correlated molecular systems including symmetrically stretched hydrogen rings, carbon dioxide, and dioxygen. Imaginary time propagation is able to restore symmetry and yields energies of comparable or better accuracy than CCSD(T) with unrestricted HF and GHF references, and consistently smooth dissociation curves─a remarkable result given the relative scalability of ph-AFQMC-G to larger system sizes.
View Article and Find Full Text PDFAliment Pharmacol Ther
January 2025
Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Villejuif, France.
Background: Association between dietary factors and the risk of developing inflammatory bowel disease (IBD) has been studied extensively. However, identification of deleterious dietary patterns merits further study.
Aim: To investigate the risk of developing Crohn's disease (CD) and ulcerative colitis (UC) according to the inflammatory score of the diet (ISD) in the multinational European Prospective Investigation into Cancer and Nutrition (EPIC) cohort.
Scientifica (Cairo)
January 2025
Department of Food and Nutritional Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 1128610, Japan.
Although glucosamine (GlcN) exhibits antitumor effects, its mechanism of action remains controversial. Additionally, its impact on hepatocellular carcinoma (HCC) is not well understood. This study aimed to investigate the antitumor effects of GlcN and its underlying mechanism in a mouse HCC cell line, Hepa1-6.
View Article and Find Full Text PDFACS Energy Lett
January 2025
George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
The global lithium-ion battery recycling capacity needs to increase by a factor of 50 in the next decade to meet the projected adoption of electric vehicles. During this expansion of recycling capacity, it is unclear which technologies are most appropriate to reduce costs and environmental impacts. Here, we describe the current and future recycling capacity situation and summarize methods for quantifying costs and environmental impacts of battery recycling methods with a focus on cathode active materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!