Background: Vectors based on human adenovirus serotype 5 (HAdV-5) continue to show promise as delivery vehicles for cancer gene therapy. Nevertheless, it has become clear that therapeutic benefit is directly linked to tumor-specific vector localization, highlighting the need for tumor-targeted gene delivery. Aberrant glycosylation of cell surface glycoproteins and glycolipids is a central feature of malignant transformation, and tumor-associated glycoforms are recognized as cancer biomarkers. On this basis, we hypothesized that cancer-specific cell-surface glycans could be the basis of a novel paradigm in HAdV-5-based vector targeting.
Methodology/principal Findings: As a first step toward this goal, we constructed a novel HAdV-5 vector encoding a unique chimeric fiber protein that contains the tandem carbohydrate binding domains of the fiber protein of the NADC-1 strain of porcine adenovirus type 4 (PAdV-4). This glycan-targeted vector displays augmented CAR-independent gene transfer in cells with low CAR expression. Further, we show that gene transfer is markedly decreased in cells with genetic glycosylation defects and by inhibitors of glycosylation in normal cells.
Conclusions/significance: These data provide the initial proof-of-concept for HAdV-5 vector-mediated gene delivery based on the presence of cell-surface carbohydrates. Further development of this new targeting paradigm could provide targeted gene delivery based on vector recognition of disease-specific glycan biomarkers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3562239 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0055533 | PLOS |
Mol Cancer
January 2025
Department of Hematology, Qilu Hospital of Shandong University, No.117, West of Wenhua Road, Jinan, Shandong, 250012, People's Republic of China.
Background: Drug resistance and immune escape continue to contribute to poor prognosis in AML. Increasing evidence suggests that exosomes play a crucial role in AML immune microenvironment.
Methods: Sanger sequencing, RNase R and fluorescence in situ hybridization were performed to confirm the existence of circ_0006896.
BMC Microbiol
January 2025
Central Research Institute of Epidemiology, Novogireevskaya Str., 3a, Moscow, 111123, Russia.
Background: The infections of bacterial origin represent a significant problem to the public healthcare worldwide both in clinical and community settings. Recent decade was marked by limiting treatment options for bacterial infections due to growing antimicrobial resistance (AMR) acquired and transferred by various bacterial species, especially the ones causing healthcare-associated infections, which has become a dangerous issue noticed by the World Health Organization. Numerous reports shown that the spread of AMR is often driven by several species-specific lineages usually called the 'global clones of high risk'.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Department of Clinical Laboratory, The Third Medical Center of Chinese PLA General Hospital, Beijing, Beijing, China
Background: Immunotherapy that targets immune checkpoints has achieved revolutionary success, but its application in solid tumors remains limited, highlighting the need for reliable enhancement of the efficacy of immunotherapy. Golgi protein 73 (GP73), a Golgi membrane protein, has been implicated in various cellular processes, including immune regulation. Recent studies suggested that GP73 may play a role in modulating the immune response in patients with cancer.
View Article and Find Full Text PDFMicrobiome
January 2025
National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
Background: Antimicrobial resistance poses a significant threat to global health, with its spread intricately linked across human, animal, and environmental sectors. Revealing the antimicrobial resistance gene (ARG) flow among the One Health sectors is essential for better control of antimicrobial resistance.
Results: In this study, we investigated regional ARG transmission among humans, food, and the environment in Dengfeng, Henan Province, China by combining large-scale metagenomic sequencing with culturing of resistant bacterial isolates in 592 samples.
BMC Plant Biol
January 2025
Dazhou Academy of Agricultural Sciences, Dazhou, 635000, China.
Background: Stemona tuberosa, a vital species in traditional Chinese medicine, has been extensively cultivated and utilized within its natural distribution over the past decades. While the chloroplast genome of S. tuberosa has been characterized, its mitochondrial genome (mitogenome) remains unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!