NMDA receptor subunits change during development and their synaptic expression is modified rapidly after synaptic plasticity induction in hippocampal slices. However, there is scarce information on subunits expression after synaptic plasticity induction or memory acquisition, particularly in adults. GluN1, GluN2A and GluN2B NMDA receptor subunits were assessed by western blot in 1) adult rats that had explored an open field (OF) for 5 minutes, a time sufficient to induce habituation, 2) mature rat hippocampal neuron cultures depolarized by KCl and 3) hippocampal slices from adult rats where long term potentiation (LTP) was induced by theta-burst stimulation (TBS). GluN1 and GluN2A, though not GluN2B, were significantly higher 70 minutes--but not 30 minutes--after a 5 minutes session in an OF. GluN1 and GluN2A total immunofluorescence and puncta in neurites increased in cultures, as evaluated 70 minutes after KCl stimulation. Similar changes were found in hippocampal slices 70 minutes after LTP induction. To start to explore underlying mechanisms, hippocampal slices were treated either with cycloheximide (a translation inhibitor) or actinomycin D (a transcription inhibitor) during electrophysiological assays. It was corroborated that translation was necessary for LTP induction and expression. The rise in GluN1 depends on transcription and translation, while the increase in GluN2A appears to mainly depend on translation, though a contribution of some remaining transcriptional activity during actinomycin D treatment could not be rouled out. LTP effective induction was required for the subunits to increase. Although in the three models same subunits suffered modifications in the same direction, within an apparently similar temporal course, further investigation is required to reveal if they are related processes and to find out whether they are causally related with synaptic plasticity, learning and memory.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3562335 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0055244 | PLOS |
Alzheimers Dement
December 2024
NYU Grossman School of Medicine, New York, NY, USA.
Background: How tauopathy disrupts direct entorhinal cortex (EC) inputs to CA1 and their plasticity is understudied, despite its critical role in memory. Moreover, dysfunction of lateral EC (LEC) input is less clear, despite its relevance to early Alzheimer's disease pathogenesis. Here we examined how tau impacts long-term potentiation (LTP) of LEC→CA1 input in a transgenic model of tauopathy.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of California, Irvine, Irvine, CA, USA.
Background: Genome-Wide Association Studies (GWAS) identified ApoE4 and Trem2*R47H as two of the strongest genetic risk factors for late-onset Alzheimer's Disease (LOAD). As part of our efforts to develop mouse models that better recapitulate LOAD, at Model Organism Development & Evaluation for Late-Onset Alzheimer's Disease (MODEL-AD) consortium at University of California - Irvine, we have created a triple homozygous mouse model that combines our previously developed hAb-KI mice (Jackson Lab #031050), Trem2 (Jackson Lab #034036) and a humanized ApoE4 (Jackson Lab #027894), to evaluate the interactions between aging, hAPOE4, TREM2*R47H, and hAb.
Method: By breeding the hAb-KI, hApoE4 and Trem2, we obtained triple homozygous (HO) mice and we then generated four different groups: WT (C57BL6/J), hAb-KI HO, hAb-KI HO;hApoE4 HO and hAb-KI HO;hApoE4 HO;Trem2 HO.
Alzheimers Dement
December 2024
University of Exeter, Exeter, United Kingdom.
Background: The J20 mouse is an established model of amyloid pathology, exhibiting neuropathological and behavioural symptoms reflective of human Alzheimer's disease (AD). Previous work, conducted by Castanho et al (2020), revealed transcriptomic change in the hippocampus of J20 mice to be associated with the accumulation of amyloid pathology. Here, we investigated the spatial distribution of such transcriptomic changes using novel spatial transcriptomic technology.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy.
Background: The role of oligomeric forms of various proteins as direct responsible of neuronal dysfunction in neurodegenerative disorders has been supported by numerous findings at experimental level and, more recently, by histological examinations in human material. The cellular prion protein (PrP) has been proposed to mediate the neurotoxicity of β-amyloid, α-synuclein and tau oligomers. We demonstrated that although amyloid-β oligomers (AβOs) bind with high affinity to PrP, the memory deficit induced by intracerebroventricular (ICV) administration of AβOs in mice was not mediated by PrP.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio De Janeiro, Rio de Janeiro, Brazil.
Background: Age-related decrease glucose utilization, coupled with insulin resistance, are key features of AD, resulting in reduced glucose utilization/catabolism and oxidative stress generation. Irisin, an exercise-induced hormone promoting mitochondrial biogenesis in adipocytes via PGC-1α, stimulates thermogenic pathways, increases energy expenditure and induces browning of adipose tissue. Further, irisin expression was shown to trigger neuroprotection in AD models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!