Harnessing genetic differences between cancerous and noncancerous cells offers a strategy for the development of new therapies. Extrapolating from yeast genetic interaction data, we used cultured human cells and siRNA to construct and evaluate a synthetic lethal interaction network comprised of chromosome instability (CIN) genes that are frequently mutated in colorectal cancer. A small number of genes in this network were found to have synthetic lethal interactions with a large number of cancer CIN genes; these genes are thus attractive targets for anticancer therapeutic development. The protein product of one highly connected gene, the flap endonuclease FEN1, was used as a target for small-molecule inhibitor screening using a newly developed fluorescence-based assay for enzyme activity. Thirteen initial hits identified through in vitro biochemical screening were tested in cells, and it was found that two compounds could selectively inhibit the proliferation of cultured cancer cells carrying inactivating mutations in CDC4, a gene frequently mutated in a variety of cancers. Inhibition of flap endonuclease activity was also found to recapitulate a genetic interaction between FEN1 and MRE11A, another gene frequently mutated in colorectal cancers, and to lead to increased endogenous DNA damage. These chemical-genetic interactions in mammalian cells validate evolutionarily conserved synthetic lethal interactions and demonstrate that a cross-species candidate gene approach is successful in identifying small-molecule inhibitors that prove effective in a cell-based cancer model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3561056 | PMC |
http://dx.doi.org/10.1371/journal.pgen.1003254 | DOI Listing |
Sci Rep
December 2024
Division of Cancer Therapeutics, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
Mutation of genes related to the SWI/SNF chromatin remodeling complex is detected in 20% of all cancers. The SWI/SNF chromatin remodeling complex comprises about 15 subunits and is classified into three subcomplexes: cBAF, PBAF, and ncBAF. Previously, we showed that ovarian clear cell carcinoma cells deficient in ARID1A, a subunit of the cBAF complex, are synthetic lethal with several genes required for glutathione (GSH) synthesis and are therefore sensitive to the GSH inhibitor eprenetapopt (APR-246).
View Article and Find Full Text PDFJ Med Virol
January 2025
Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
The outbreak of clade II monkeypox virus (MPXV) and the additional outbreak in Central Africa of clade I virus from 2023 have attracted worldwide attention. The development of a scalable and effective vaccine against the ongoing epidemic of mpox is urgently needed. We previously constructed two bivalent MPXV mRNA vaccines, LBA (B6R-A29L) and LAM (A35R-M1R), and a quadrivalent mRNA vaccine, LBAAM (B6R-A35R-A29L-M1R).
View Article and Find Full Text PDFInvest New Drugs
December 2024
Division of Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.
Antiangiogenic drugs may cause vascular normalization and correct hypoxia in tumors, shifting cells to mitochondrial respiration as the primary source of energy. In turn, the addition of an inhibitor of mitochondrial respiration to antiangiogenic therapy holds potential to induce synthetic lethality. This study evaluated the mitochondrial inhibitor ME-344 in combination with bevacizumab in patients with refractory metastatic colorectal cancer (mCRC).
View Article and Find Full Text PDFJ Med Chem
December 2024
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
PARP (poly-ADP ribose polymerase) has received widespread attention in cancer treatment. Research has shown that PARP plays a crucial role in DNA damage repair and has become a popular target for drug design. Based on the mechanism of "synthetic lethality", multiple PARPis (PARP inhibitors) have been launched for the treatment of BRCA deficient tumors.
View Article and Find Full Text PDFThe advent of poly(ADP-ribose) polymerase (PARP) inhibitors has resulted in a significant paradigm shift in ovarian cancer treatment. Niraparib, a potent PARP inhibitor, has demonstrated substantial efficacy in both first-line and recurrent disease settings. By targeting homologous recombination DNA repair, a pathway frequently disrupted in ovarian cancer, particularly in the context of BRCA mutations, niraparib induces synthetic lethality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!