Photorespiratory carbon flux reaches up to a third of photosynthetic flux, thus contributes massively to the global carbon cycle. The pathway recycles glycolate-2-phosphate, the most abundant byproduct of RubisCO reactions. This oxygenation reaction of RubisCO and subsequent photorespiration significantly limit the biomass gains of many crop plants. Although photorespiration is a compartmentalized process with enzymatic reactions in the chloroplast, the peroxisomes, the mitochondria, and the cytosol, no transporter required for the core photorespiratory cycle has been identified at the molecular level to date. Using transcript coexpression analyses, we identified Plastidal glycolate glycerate translocator 1 (PLGG1) as a candidate core photorespiratory transporter. Related genes are encoded in the genomes of archaea, bacteria, fungi, and all Archaeplastida and have previously been associated with a function in programmed cell-death. A mutant deficient in PLGG1 shows WT-like growth only in an elevated carbon dioxide atmosphere. The mutant accumulates glycolate and glycerate, leading to the hypothesis that PLGG1 is a glycolate/glycerate transporter. This hypothesis was tested and supported by in vivo and in vitro transport assays and (18)O(2)-metabolic flux profiling. Our results indicate that PLGG1 is the chloroplastidic glycolate/glycerate transporter, which is required for the function of the photorespiratory cycle. Identification of the PLGG1 transport function will facilitate unraveling the role of similar proteins in bacteria, archaea, and fungi in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3581909 | PMC |
http://dx.doi.org/10.1073/pnas.1215142110 | DOI Listing |
Sci Rep
January 2025
Department of Bio & Healing Convergence, Konkuk University, Seoul, 05029, Republic of Korea.
This study investigated the psychophysiological and metabolomic changes during horticultural activities involving the inhalation of volatile organic compounds (VOCs) in individuals experiencing depressive mood based on the presence or absence of the soil microbe Streptomyces rimosus, which emits VOCs. Thirty participants met the specific depression and anxiety criteria and engaged in horticultural activities using soil inoculated with S. rimosus (experimental group) or medium (control group).
View Article and Find Full Text PDFInt J Mol Sci
September 2024
College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China.
This study investigated the effects of dietary resveratrol (RES) and β-Hydroxy-β-methyl butyric acid (HMB) on immune, oxidative, and morphological changes in the livers of Tibetan sheep using transcriptomics and metabolomics. One hundred and twenty male Tibetan lambs of a similar initial weight (15.5 ± 0.
View Article and Find Full Text PDFNat Commun
July 2024
Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan.
We report primordial aqueous alteration signatures in water-soluble organic molecules from the carbonaceous asteroid (162173) Ryugu by the Hayabusa2 spacecraft of JAXA. Newly identified low-molecular-weight hydroxy acids (HO-R-COOH) and dicarboxylic acids (HOOC-R-COOH), such as glycolic acid, lactic acid, glyceric acid, oxalic acid, and succinic acid, are predominant in samples from the two touchdown locations at Ryugu. The quantitative and qualitative profiles for the hydrophilic molecules between the two sampling locations shows similar trends within the order of ppb (parts per billion) to ppm (parts per million).
View Article and Find Full Text PDFMethods Mol Biol
June 2024
Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India.
Photorespiration, an essential metabolic component, is a classic example of interactions between the intracellular compartments of a plant cell: the chloroplast, peroxisome, mitochondria, and cytoplasm. The photorespiratory pathway is often modulated by abiotic stress and is considered an adaptive response. Monitoring the patterns of key enzymes located in different subcellular components would be an ideal approach to assessing the modulation of the photorespiratory metabolism under abiotic stress.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
June 2024
Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa-shi, Kyoto, 619-0292, Japan.
Ethylene glycol (EG) is an industrially important two-carbon diol used as a solvent, antifreeze agent, and building block of polymers such as poly(ethylene terephthalate) (PET). Recently, the use of EG as a starting material for the production of bio-fuels or bio-chemicals is gaining attention as a sustainable process since EG can be derived from materials not competing with human food stocks including CO, syngas, lignocellulolytic biomass, and PET waste. In order to design and construct microbial process for the conversion of EG to value-added chemicals, microbes capable of catabolizing EG such as Escherichia coli, Pseudomonas putida, Rhodococcus jostii, Ideonella sakaiensis, Paracoccus denitrificans, and Acetobacterium woodii are candidates of chassis for the construction of synthetic pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!