Male-specific lethal complex in Drosophila counteracts histone acetylation and does not mediate dosage compensation.

Proc Natl Acad Sci U S A

Division of Biological Sciences, C. Bond Life Science Center, University of Missouri, Columbia, MO 65211, USA.

Published: February 2013

Dosage compensation is achieved in male Drosophila by a twofold up-regulation of the single X chromosome to reach the level of the two X chromosomes in females. A popular hypothesis to explain this phenomenon is that the male-specific lethal (MSL) complex, which is present at high levels on the male X, mediates this modulation of gene expression. One member of the complex, MOF, a histone acetyltransferase, acetylates lysine 16 of histone H4 and another, MSL2, which is only expressed in males, triggers its assembly. Here, we find that when a GAL4-MOF fusion protein is targeted to an upstream-activating sequence linked to a miniwhite reporter, up-regulation occurs in females but down-regulation in males, even though in the latter the whole MSL complex is recruited to the reporter genes and produces an increased histone acetylation. The expression of a GAL4-MSL2 fusion protein does not cause dosage compensation of X and autosomal reporters in females, although its expression causes the organization of the MSL complex on the reporter genes, leading to increased histone acetylation. RNAseq analysis of global endogenous gene expression in females with ectopic expression of MSL2 to coat the X chromosomes shows no evidence of increased expression compared with normal females. These data from multiple approaches indicate that the MSL complex does not mediate dosage compensation directly, but rather its activity overrides the high level of histone acetylation and counteracts the potential overexpression of X-linked genes to achieve the proper twofold up-regulation in males.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3587201PMC
http://dx.doi.org/10.1073/pnas.1222542110DOI Listing

Publication Analysis

Top Keywords

histone acetylation
16
dosage compensation
16
msl complex
16
male-specific lethal
8
mediate dosage
8
twofold up-regulation
8
gene expression
8
fusion protein
8
reporter genes
8
increased histone
8

Similar Publications

Cancer is one of the leading causes of morbidity and mortality worldwide. One of the primary causes of cancer development and progression is epigenetic dysregulation, which is a heritable modification that alters gene expression without changing the DNA sequence. Therefore, targeting these epigenetic changes has emerged as a promising therapeutic strategy.

View Article and Find Full Text PDF

Upregulated astrocyte HDAC7 induces Alzheimer-like tau pathologies via deacetylating transcription factor-EB and inhibiting lysosome biogenesis.

Mol Neurodegener

January 2025

College of Life Sciences and Oceanography, Brain Disease and Big Data Research Institute, Shenzhen University, Shenzhen, 518060, Guangdong, China.

Background: Astrocytes, the most abundant glial cell type in the brain, will convert into the reactive state in response to proteotoxic stress such as tau accumulation, a characteristic feature of Alzheimer's disease (AD) and other tauopathies. The formation of reactive astrocytes is partially attributed to the disruption of autophagy lysosomal signaling, and inhibiting of some histone deacetylases (HDACs) has been demonstrated to reduce the molecular and functional characteristics of reactive astrocytes. However, the precise role of autophagy lysosomal signaling in astrocytes that regulates tau pathology remains unclear.

View Article and Find Full Text PDF

TBX3 is Essential for Zygotic Genome Activation and Embryonic Development in Pigs.

Microsc Microanal

January 2025

Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.

The pluripotency-related T-box family transcription factor TBX3 maintains mESC self-renewal and plays a key role in the development of several tissues, including the heart, mammary glands, limbs, and lungs. However, the role of TBX3 during porcine preimplantation embryo development remains unclear. In our research, TBX3 was knocked down by injecting dsRNA to explore the function of TBX3.

View Article and Find Full Text PDF

Exploring the various functions of PHD finger protein 20: beyond the unknown.

Toxicol Res

January 2025

Department of Pharmacology, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea.

Over the last decade, the functions of PHD finger protein 20 (PHF20) in several signaling processes have been studied, including those of protein kinase B (PKB)-mediated phosphorylation, p53 regulation, muscle differentiation, and histone modification including histone H3 lysine 4 (H3K4) methylation. One PHF20 human mutation lacks the first nonspecific lethal complex of the component that binds to H3K4me2 to facilitate cancer cell survival. In carcinoma cells, PHF20 expression is regulated by PKB; PHF20 becomes phosphorylated when DNA is damaged, thus inhibiting the p53 activity that maintains cancer cell survival.

View Article and Find Full Text PDF

Post-translational modifications of histone H3 on lysine 9, specifically acetylation (H3K9ac) and tri-methylation (H3K9me3), play a critical role in regulating chromatin accessibility. However, the role of these modifications in lineage segregation in the mammalian blastocyst remains poorly understood. We demonstrate that di- and tri-methylation marks, H3K9me2 and H3K9me3, decrease during cavitation and expansion of the rabbit blastocyst.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!