To identify molecular features associated with clinico-pathological parameters and TMPRSS2-ERG fusion status in prostate cancer, we employed MALDI mass spectrometric imaging (MSI) to a prostate cancer tissue microarray (TMA) containing formalin-fixed, paraffin-embedded tissues samples from 1,044 patients for which clinical follow-up data were available. MSI analysis revealed 15 distinct mass per charge (m/z)-signals associated to epithelial structures. A comparison of these signals with clinico-pathological features revealed statistical association with favorable tumor phenotype such as low Gleason grade, early pT stage or low Ki67 labeling Index (LI) for four signals (m/z 700, m/z 1,502, m/z 1,199 and m/z 3,577), a link between high Ki67LI for one signal (m/z 1,013) and a relationship with prolonged time to PSA recurrence for one signal (m/z 1,502; p = 0.0145). Multiple signals were associated with the ERG-fusion status of our cancers. Two of 15 epithelium-associated signals including m/z 1,013 and m/z 1,502 were associated with detectable ERG expression and five signals (m/z 644, 678, 1,044, 3,086 and 3,577) were associated with ERG negativity. These observations are in line with substantial molecular differences between fusion-type and non-fusion type prostate cancer. The signals observed in this study may characterize molecules that play a role in the development of TMPRSS2-ERG fusions, or alternatively reflect pathways that are activated as a consequence of ERG-activation. The combination of MSI and large-scale TMAs reflects a powerful approach enabling immediate prioritization of MSI signals based on associations with clinico-pathological and molecular data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ijc.28080 | DOI Listing |
Scand J Urol
January 2025
Department of Urology, Odense University Hospital, Odense, Denmark; Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
Objective: Early and accurate diagnosis of prostate cancer (PC) is crucial for effective treatment. Diagnosing clinically insignificant cancers can lead to overdiagnosis and overtreatment, highlighting the importance of accurately selecting patients for further evaluation based on improved risk prediction tools. Novel biomarkers offer promise for enhancing this diagnostic process.
View Article and Find Full Text PDFHeliyon
January 2025
Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.
Neurosignaling is increasingly recognized as a critical factor in cancer progression, where neuronal innervation of primary tumors contributes to the disease's advancement. This study focuses on segmenting individual axons within the prostate tumor microenvironment, which have been challenging to detect and analyze due to their irregular morphologies. We present a novel deep learning-based approach for the automated segmentation of axons, AxonFinder, leveraging a U-Net model with a ResNet-101 encoder, based on a multiplexed imaging approach.
View Article and Find Full Text PDFTech Innov Patient Support Radiat Oncol
March 2025
Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Tokushima 770-8503, Japan.
Purpose: This study aims to compare treatment plans created using RapidPlan and PlanIQ for twelve patients with prostate cancer, focusing on dose uniformity, dose reduction to organs at risk (OARs), plan complexity, and dose verification accuracy. The goal is to identify the tool that demonstrates superior performance in achieving uniform target dose distribution and reducing OAR dose, while ensuring accurate dose verification.
Methods: Dose uniformity in the planning target volume, excluding the rectum, and dose reduction in the OARs (the rectum and bladder) were assessed.
J Bone Oncol
February 2025
Unit of Oral Medicine and Dentistry for Frail Patients, Department of Rehabilitation, Fragility, and Continuity of Care, Regional Center for Research and Care of MRONJ, University Hospital Palermo, Palermo, PA, Italy.
Background: Low-doses of bone modifying agents (LD-BMAs) compared to those used to treat bone metastases are used in breast or prostate cancer patients on adjuvant endocrine therapy to prevent Cancer Treatment Induced Bone Loss (CTIBL). Their use is associated with an increased risk of developing Medication-Related Osteonecrosis of the Jaw (MRONJ). However, there is not clarity about strategies aimed to minimize the MRONJ risk in cancer patients at different conditions as low- vs high-doses of BMA.
View Article and Find Full Text PDFWorld Allergy Organ J
January 2025
Institute of Life Science, Chongqing Medical University, Chongqing, China.
Background: Allergic rhinitis (AR) is a common chronic respiratory disease that can lead to the development of various other conditions. Although genetic risk loci associated with AR have been reported, the connections between these loci and AR comorbidities or other diseases remain unclear.
Methods: This study conducted a phenome-wide association study (PheWAS) using known AR risk loci to explore the impact of known AR risk variants on a broad spectrum of phenotypes.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!