We report, for the first time to our knowledge, femtosecond pulse generation from a graphene mode-locked Cr:ZnSe laser at 2500 nm. To minimize the insertion losses at the lasing wavelength, high-quality monolayer graphene transferred on a CaF(2) substrate was used in the experiments. Once mode-locking was initiated, the laser generated a stable train of 226 fs pulses with a time-bandwidth product of 0.39. The mode-locked laser operated at a pulse repetition rate of 77 MHz and produced 80 mW output power with an incident pump power of 1.6 W. To our knowledge, this is the longest laser wavelength at which graphene-based passive mode-locking has been demonstrated to date.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.38.000341 | DOI Listing |
Nanophotonics
April 2024
TUM School of Computation, Information and Technology, Technical University of Munich (TUM), D-85748 Garching, Germany.
In research and engineering, short laser pulses are fundamental for metrology and communication. The generation of pulses by passive mode-locking is especially desirable due to the compact setup dimensions, without the need for active modulation requiring dedicated external circuitry. However, well-established models do not cover regular self-pulsing in gain media that recover faster than the cavity round trip time.
View Article and Find Full Text PDFWe have experimentally observed an ultrashort conventional vector soliton in an erbium-doped fiber laser. The few-layered graphene oxide (GO) is used as a saturable absorber (SA). It is found that the saturable absorption characteristic of GO is polarization independent.
View Article and Find Full Text PDFFront Optoelectron
June 2023
Department of Optical Engineering, School of Opto-Electronic Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
This paper proposes a mode-locked fiber laser based on graphene-coated microfiber. The total length of the fiber laser resonant cavity is 31.34 m.
View Article and Find Full Text PDFMicromachines (Basel)
May 2023
Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia.
We investigate the dynamics of high energy dual regime unidirectional Erbium-doped fiber laser in ring cavity, which is passively Q-switched and mode-locked through the use of an environmentally friendly graphene filament-chitin film-based saturable absorber. The graphene-chitin passive saturable absorber allows the option for different operating regimes of the laser by simple adjustment of the input pump power, yielding, simultaneously, highly stable and high energy Q-switched pulses at 82.08 nJ and 1.
View Article and Find Full Text PDFThis Letter proposes a novel, to the best of our knowledge, transistor-like optical fiber modulator composed of graphene oxide (GO) and polystyrene (PS) microspheres. Unlike previously proposed schemes based on waveguides or cavity enhancement, the proposed method can directly enhance the photoelectric interaction with the PS microspheres to form a light local field. The designed modulator exhibits a distinct optical transmission change (62.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!