The majority of existing functional MRI studies on olfactory perception have addressed the relationship between stimulus features and the intensity of activity in separate regions considered in isolation. However, anatomical studies as well as neurophysiological recordings in rats and insects suggest that odor features may also be represented in a sparse manner through the simultaneous activity of multiple cortical areas interacting as a network. Here, we aimed to map the interdependence of neural activity among regions of the human brain, representing functional connectivity, during passive smelling. Seventeen healthy participants were scanned while performing a blocked-design task alternating exposure to two unpleasant odorants and breathing fresh air. High efferent connectivity was detected for the piriform cortex and the amygdala bilaterally. By contrast, the medial orbitofrontal cortex was characterized by high afferent connectivity, notably in the absence of an overall change in the intensity of hemodynamic activity during olfactory stimulation. Our results suggest that, even in the context of an elementary task, information on olfactory stimuli is scattered by the amygdala and piriform cortex onto an anatomically sparse representation and then gathered and integrated in the medial orbitofrontal cortex.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/WNR.0b013e32835d5d2b | DOI Listing |
As of 2023, 69% of adults and 81% of teens in the U.S. use social media.
View Article and Find Full Text PDFThe current state of mental health treatment for individuals diagnosed with major depressive disorder leaves billions of individuals with first-line therapies that are ineffective or burdened with undesirable side effects. One major obstacle is that distinct pathologies may currently be diagnosed as the same disease and prescribed the same treatments. The key to developing antidepressants with ubiquitous efficacy is to first identify a strategy to differentiate between heterogeneous conditions.
View Article and Find Full Text PDFSomatic mutations in individual cells lead to genomic mosaicism, contributing to the intricate regulatory landscape of genetic disorders and cancers. To evaluate and refine the detection of somatic mosaicism across different technologies with personalized donor-specific assembly (DSA), we obtained tissue from the dorsolateral prefrontal cortex (DLPFC) of a post-mortem neurotypical 31-year-old individual. We sequenced bulk DLPFC tissue using Oxford Nanopore Technologies (∼60X), NovaSeq (∼30X), and linked-read sequencing (∼28X).
View Article and Find Full Text PDFUnlabelled: Social cognition spans from perceiving agents and their interactions to making inferences based on theory of mind (ToM). Despite their frequent co-occurrence in real life, the commonality and distinction between social interaction perception and ToM at behavioral and neural levels remain unclear. Here, participants ( = 231) provided moment-by-moment ratings of four text and four audio narratives on social interactions and ToM engagement.
View Article and Find Full Text PDFAdaptive behavior depends on the ability to predict specific events, particularly those related to rewards. Armed with such associative information, we can infer the current value of predicted rewards based on changing circumstances and desires. To support this ability, neural systems must represent both the value and identity of predicted rewards, and these representations must be updated when they change.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!