We report here on studies of reorientation of human red blood cells (RBCs) in an optical trap. We have measured the time required, tre, for the plane of the RBC entering the optical trap to undergo a 90-deg rotation to acquire an edge on orientation with respect to the beam direction. This has been studied as a function of laser power, P, at the trap center. The variation of tre with increasing P shows an initial sharp decrease followed by a much smaller rate of further decrease. We find that this experimentally measured variation is not in complete agreement with the variation predicted by a theoretical model where the RBC is treated as a perfectly rigid circular disk-like body. We argue that this deviation arises due to deformation of the RBC. We further reason that this feature is dominated by the elastic behavior of the RBC membrane. We compare the studies carried out on normal RBCs with RBCs where varying conditions of membrane stiffness are expected. We propose that the value of energy used for maximum deformation possible during a reorientation process is an indicator of the membrane elasticity of the system under study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1117/1.JBO.18.2.025001 | DOI Listing |
FEBS J
January 2025
Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Italy.
The trimeric intracellular cation channel B (TRIC-B), encoded by TMEM38B, is a potassium (K) channel present in the endoplasmic reticulum membrane, where it counterbalances calcium (Ca) exit. Lack of TRIC-B activity causes a recessive form of the skeletal disease osteogenesis imperfecta (OI), namely OI type XIV, characterized by impaired intracellular Ca flux and defects in osteoblast (OB) differentiation and activity. Taking advantage of the OB-specific Tmem38b knockout mouse (Runx2Cre;Tmem38b; cKO), we investigated how the ion imbalance affects the osteogenetic process.
View Article and Find Full Text PDFNPJ Biosens
January 2025
Department of Electrical Engineering, University of Victoria, Victoria, BC V8W 3P6 Canada.
The reactivation of heterotrimeric protein phosphatase 2A (PP2A) through small molecule activators is of interest to therapeutic intervention due to its dysregulation, which is linked to chronic conditions. This study focuses on the PP2A scaffold subunit PR65 and a small molecule activator, ATUX-8385, designed to bind directly to this subunit. Using a label-free single-molecule approach with nanoaperture optical tweezers (NOT), we quantify its binding, obtaining a dissociation constant of 13.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3 V9, Canada.
is a leading foodborne pathogen that may enter a viable but nonculturable (VBNC) state to survive under environmental stresses, posing a significant health concern. VBNC cells can evade conventional culture-based detection methods, while viability-based assays are usually hindered by low sensitivity, insufficient specificity, or technical challenges. There are limited studies analyzing VBNC cells at the single-cell level for accurate detection and an understanding of their unique behavior.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Physics, Indian Institute of Science, Bangalore 560012, India.
The low-frequency resistance fluctuations, or noise, in electrical resistance not only set a performance benchmark in devices but also form a sensitive tool to probe nontrivial electronic phases and band structures in solids. Here, we report the measurement of such noise in the electrical resistance in twisted bilayer graphene (tBLG), where the layers are misoriented close to the magic angle (θ ∼ 1°). At high temperatures ( ≳ 60-70 K), the power spectral density (PSD) of the fluctuation inside the low-energy moiré bands is predominantly ∝1/, where is the frequency, being generally lowest close to the magic angle, and can be well-explained within the conventional McWhorter model of the '1/ noise' with trap-assisted density-mobility fluctuations.
View Article and Find Full Text PDFTraditional magneto-optical traps are often bulky and complex, which limits their application in portable and scalable technologies. In this study, we propose a method for generating cold atoms using a transmission-grating-based magneto-optical trap (TGMOT). This approach addresses the limitations of traditional magneto-optical traps using a transmission-grating design that simplifies the optical configuration, allowing for efficient atom capture with a single incident beam.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!