The thermotolerant methylotrophic yeast Hansenula polymorpha is able to grow at elevated temperature up to 48 °C as one of a few yeast strains which are naturally capable of alcoholic fermentation of xylose, a pentose sugar abundant in lignocellulosic biomass. However, the current level of ethanol production from xylose by H. polymorpha is still very low compared to those of other xylose-fermenting strains. Therefore, it is necessary to analyze and remodel the xylose metabolism in H. polymorpha at the whole genome level to identify and overcome these limits. In the present study, the transcriptomes of H. polymorpha grown on xylose were compared with those of glucose-grown cells under both aerobic and microaerobic conditions. Approximately, two percent of H. polymorpha genes were either up- or down-regulated by more than two-fold during the growth on xylose. The majority of the up-regulated genes were involved in metabolism. Some genes involved in xylose metabolism, such as XYL1, XYL2, and TAL1 were also up-regulated, despite the fact that the differences in their induction level were only about three-fold. On the other hand, the majority of the down-regulated genes were involved in metabolism and cellular transport. Interestingly, some genes involved in glycolysis and ethanol fermentation were also repressed during growth on xylose, suggesting that these genes are good targets for engineering H. polymorpha to improve xylose fermentation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00449-013-0909-3 | DOI Listing |
Inflamm Regen
January 2025
Oncology & Immunology Unit, Research Division, Mitsubishi Tanabe Pharma Corporation, Kanagawa, 227-0033, Japan.
Idiopathic inflammatory myopathies (IIMs) are a group of autoimmune disorders characterized by immune cell infiltration of muscle tissue accompanied by inflammation. Treatment of IIMs is challenging, with few effective therapeutic options due to the lack of appropriate models that successfully recapitulate the features of IIMs observed in humans. In the present study, we demonstrate that immunodeficient mice transplanted with human peripheral blood mononuclear cells (hPBMCs) exhibit the key pathologic features of myositis observed in humans and develop graft-versus-host disease.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain.
Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with limited treatment options and a poor prognosis. The critical role of epigenetic alterations such as changes in DNA methylation, histones modifications, and chromatin remodeling, in pancreatic tumors progression is becoming increasingly recognized. Moreover, in PDAC these aberrant epigenetic mechanisms can also limit therapy efficacy.
View Article and Find Full Text PDFJ Neuroinflammation
January 2025
Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
The thrombolytic protease tissue plasminogen activator (tPA) is expressed in the CNS, where it regulates diverse functions including neuronal plasticity, neuroinflammation, and blood-brain-barrier integrity. However, its role in different brain regions such as the substantia nigra (SN) is largely unexplored. In this study, we characterize tPA expression, activity, and localization in the SN using a combination of retrograde tracing and β-galactosidase tPA reporter mice.
View Article and Find Full Text PDFBMC Med Genomics
January 2025
Department of Otolaryngology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, WuHua District, Kunming City, Yunnan Province, China.
Hearing loss is a prevalent condition with a significant impact on individuals' quality of life. However, comprehensive studies investigating the differential gene expression and regulatory mechanisms associated with hearing loss are lacking, particularly in the context of diverse patient samples. In this study, we integrated data from 10 patients across different regions, age groups, and genders, with their data retrieved from a public transcriptome database, to explore the molecular basis of hearing loss.
View Article and Find Full Text PDFMol Cancer
January 2025
Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy.
B cells have emerged as central players in the tumor microenvironment (TME) of non-small cell lung cancer (NSCLC). However, although there is clear evidence for their involvement in cancer immunity, scanty data exist on the characterization of B cell phenotypes, bioenergetic profiles and possible interactions with T cells in the context of NSCLC. In this study, using polychromatic flow cytometry, mass cytometry, and spatial transcriptomics we explored the intricate landscape of B cell phenotypes, bioenergetics, and their interaction with T cells in NSCLC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!