Flow disturbance and reduced blood flow have been associated with higher restenosis rates and clinical adverse events after coronary interventions. In the present study, we sought to investigate flow alterations that occurred after stent implantation in a coronary model, within and adjacent to the stented segment. Two stents (Carbostent, Tetrastent) with different strut design were deployed in the left anterior descending artery (LAD) of a 1:1 scaled silicon coronary model. The model was mounted into an artificial circulation and showed distensibility and rheologic behavior comparable to human coronaries. Flow profiles were assessed using laser-Doppler anemometry. Both stents induced a transitional flow within the stents, in the jailed branch as well as in the adjacent segments. However, the alterations in flow were less marked using the Carbostent having stents with thinner struts and a larger strut cell area, and thus seem to be more favorable in avoiding bifurcation lesions. This study shows precisely that stent implantation induces flow disturbances in segments known to be prone for restenosis. Investigations using laser-Doppler measurements may enlighten rheologic phenomena inducing restenosis and help in optimizing stent design and deployment techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/BIR-2012-0617 | DOI Listing |
Pol J Vet Sci
December 2024
School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China.
Pseudorabies virus (PRV) is one of the most important infectious diseases which leads to significant economic losses in the global swine industry. The gE-deleted vaccine is widely used to prevent susceptible pigs from PRV infection. There is no report of the differentiation of PRV wild strain and vaccine strain by recombinase polymerase amplification (RPA) coupled with a lateral flow dipstick (LFD) method.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
December 2024
Pathology Advanced Translational Research Unit, Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
Background: Regulatory T-cells (Tregs) play a crucial role in maintaining immune homeostasis, but their dynamics are altered in a subset of people living with Human Immunodeficiency Virus (HIV) known as immunological non-responders (INRs). INRs fail to reconstitute CD4 T-cell counts despite viral suppression. This study aimed to examine Treg dysregulation in INRs, comparing them to immunological responders (IRs) and healthy controls (HCs).
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
December 2024
Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China.
Background: Acute lung injury (ALI) significantly impacts the survival rates in intensive care units (ICU). Releasing a lot of pro-inflammatory mediators during the progression of the disease is a core feature of ALI, which may lead to uncontrolled inflammation and further damages the tissues and organs of patients. This study explores the potential therapeutic mechanisms of Dexmedetomidine (Dex) in ALI.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
December 2024
Research Centre for Medical Genetics, 115522 Moscow, Russia.
Background: There is a growing interest in exploring the biological characteristics of nanoparticles and exploring their potential applications. However, there is still a lack of research into the potential genotoxicity of fullerene derivatives and their impact on gene expression in human cells. In this study, we investigated the effects of a water-soluble fullerene derivative, C60[C6H4SCH2COOK]5H (F1), on human embryonic lung fibroblasts (HELF).
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
December 2024
Department of Pathology, The First Affiliated Hospital of Soochow University, 215123 Suzhou, Jiangsu, China.
Background: Psoriasis is a chronic and incurable skin inflammation driven by an abnormal immune response. Our study aims to investigate the potential of interferon-γ (IFN-γ) primed mesenchymal stem cells (IMSCs) in targeting T cells to attenuate psoriasis-like inflammation, and to elucidate the underlying molecular mechanism involved.
Methods: Mesenchymal stem cells (MSCs) were isolated from the umbilical cord and identified based on their surface markers.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!