The twin-arginine translocation (Tat(1)) pathway is unique with respect to its property to translocate proteins in a fully folded conformation across ion-tight membranes. In chloroplasts and Gram-negative bacteria, Tat translocase consists of the integral subunits TatB and TatC, which are assumed to constitute the membrane receptor, and TatA, a bitopic membrane protein being responsible in a yet unknown manner for the membrane translocation step. Antibody inhibition of intrinsic thylakoidal TatA activity and recovery of transport by heterologously expressed, purified TatA allowed to exactly quantify the amount of TatA required to catalyse membrane transport of the model Tat substrate 16/23. We can show that TatA concentrations in the 100nM range are sufficient to efficiently catalyse membrane transport of the protein, which corresponds well to the amount of TatA identified in thylakoids. Furthermore, TatA shows cooperativity in its catalytic activity suggesting that Tat translocase operates as an allosteric enzyme complex.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamcr.2013.01.030DOI Listing

Publication Analysis

Top Keywords

tata
8
tat translocase
8
amount tata
8
catalyse membrane
8
membrane transport
8
membrane
5
tata demand
4
demand tat-dependent
4
tat-dependent protein
4
transport
4

Similar Publications

Background: Trait variation is shaped by functional roles of traits and the strength and direction of selection acting on the traits. We hypothesized that in butterflies, sexually selected colouration is more variable owing to condition-dependent nature and directional selection on sexual ornaments, whereas naturally selected colouration may be less variable because of stabilising selection. We measured reflectance spectra, and extracted colour parameters, to compare the amount of variation in sexually versus naturally selected colour patches across wing surfaces and sexes of 20 butterfly species across 4 families (Nymphalidae, Papilionidae, Pieridae, Lycaenidae).

View Article and Find Full Text PDF

Spin transport properties in a topological insulator sandwiched between two-dimensional magnetic layers.

Sci Rep

January 2025

Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691, Stockholm, Sweden.

Non-trivial band topology along with magnetism leads to different novel quantum phases. When time-reversal symmetry is broken in three-dimensional topological insulators (TIs) through, e.g.

View Article and Find Full Text PDF

Background: Aspirin is a simple, globally available medication that has been shown to reduce the incidence of colorectal cancer. We aimed to evaluate the safety and efficacy of aspirin in the secondary prevention of colorectal cancer.

Methods: This phase 3, randomised, double-blind, placebo-controlled trial was conducted at 66 centres across 11 countries and territories (ten in Asia-Pacific; one in the Middle East).

View Article and Find Full Text PDF

Noise in the immunohematological investigations can be described as a false reactivity of red blood cells (RBCs) in serologic testing that is not related to the interaction of RBC antigens and antibodies that the test system is intended to detect. These false-positive reactions can cause confusion during the cross-matching and RBC antibody screening and may result in delays in patient transfusion. Although these antibodies are predominantly clinically insignificant, proper laboratory work-up is indicated to avoid misidentification of a clinically significant antibody as a noise.

View Article and Find Full Text PDF

Purpose: Head and neck cancers (HNCs) are in general treated with conventional fractionation regimen of 1.8-2 Gy per fraction. Altered fractionation (ALFT) strategies such as hypofractionation radiotherapy (HYPO-RT), accelerated fractionation radiotherapy (AFRT), and hyperfractionation radiotherapy (HFRT) have not been practiced uniformly across centers in different parts of the world.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!