The formate/nitrite transporter (FNT) family of integral membrane proteins comprises pentameric channels for monovalent anions that exhibit a broad specificity for small anions such as chloride, the physiological cargo molecules formate, nitrite, and hydrosulfide, and also larger organic acids. Three-dimensional structures are available for the three known subtypes, FocA, NirC, and HSC, which reveal remarkable evolutionary optimizations for the respective physiological context of the channels. FNT channels share a conserved translocation pathway in each protomer, with a central hydrophobic cavity that is separated from both sides of the membrane by a narrow constriction. A single protonable residue, a histidine, plays a key role by transiently protonating the transported anion to allow an uncharged species to pass the hydrophobic barrier. Further selectivity is reached through variations in the electrostatic surface potential of the proteins, priming the formate channel FocA for anion export, whereas NirC and HSC should work bidirectionally. Electrophysiological studies have shown that a broad variety of monovalent anions can be transported, and in the case of FocA, these match exactly the products of mixed-acid fermentation, the predominant metabolic pathway for most enterobacterial species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1515/hsz-2012-0339 | DOI Listing |
World J Microbiol Biotechnol
January 2024
Biosystem Engineering Department, Bozok University, Yozgat , 66900, Türkiye.
Because of the hydrophobic nature of the membrane lipid bilayer, the majority of the hydrophilic solutes require special transportation mechanisms for passing through the cell membrane. Integral membrane transport proteins (MTPs), which belong to the Major Intrinsic Protein Family, facilitate the transport of these solutes across cell membranes. MTPs including aquaporins and carrier proteins are transmembrane proteins spanning across the cell membrane.
View Article and Find Full Text PDFAntimicrob Agents Chemother
August 2023
Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany.
Malaria parasites in the blood stage express a single transmembrane transport protein for the release of the glycolytic end product l-lactate/H from the cell. This transporter is a member of the strictly microbial formate-nitrite transporter (FNT) family and a novel putative drug target. Small, drug-like FNT inhibitors potently block lactate transport and kill Plasmodium falciparum parasites in culture.
View Article and Find Full Text PDFBiomolecules
November 2022
Pharmaceutical Institute, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany.
The transmembrane transport of weak acid and base metabolites depends on the local pH conditions that affect the protonation status of the substrates and the availability of co-substrates, typically protons. Different protein designs ensure the attraction of substrates and co-substrates to the transporter entry sites. These include electrostatic surface charges on the transport proteins and complexation with seemingly transport-unrelated proteins that provide substrate and/or proton antenna, or enzymatically generate substrates in place.
View Article and Find Full Text PDFMicrobiology (Reading)
October 2022
Institute of Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
During enterobacterial mixed-acid fermentation, formate is generated from pyruvate by the glycyl-radical enzyme pyruvate formate-lyase (PflB). In , especially at low pH, formate is then disproportionated to CO and H by the cytoplasmically oriented, membrane-associated formate hydrogenlyase (FHL) complex. If electron acceptors are available, however, formate is oxidized by periplasmically oriented, respiratory formate dehydrogenases.
View Article and Find Full Text PDFMicrobiologyopen
August 2022
Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle, Saale, Germany.
The formate-specific anion channel FocA of Escherichia coli belongs to the superfamily of homopentameric formate-nitrite transporters (FNT). Minimally nine amino acid residues are conserved in the formate translocation pore of each protomer of the pentamer, including a histidine (H209) and a threonine (T91), both of which are crucial for bidirectional formate translocation through the pore. Information regarding in vivo functional or structural roles for the other seven conserved residues is limited, or nonexistent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!