A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Selective brain region activation by histamine H₃ receptor antagonist/inverse agonist ABT-239 enhances acetylcholine and histamine release and increases c-Fos expression. | LitMetric

Histamine axons originate solely from the tuberomamillary nucleus (TMN) to innervate almost all brain regions. This feature is consistent with a function for histamine over a host of physiological processes, including regulation of appetite, body temperature, cognitive processes, pain perception and sleep-wake cycle. An important question is whether these diverse physiological roles are served by different histamine neuronal subpopulations. Here we report that systemic administration of the non-imidazole histamine H₃ receptor antagonist 4-(2-{2-[(2R)-2-methylpyrrolidinyl]ethyl}-benzofuran-5-yl)benzonitrile (ABT-239, 3 mg/kg) increased c-Fos expression dose-dependently in rat cortex and nucleus basalis magnocellularis (NBM) but not in the nucleus accumbens (NAcc) nor striatum, and augmented acetylcholine and histamine release from rat prefrontal cortex. To further understand functional histaminergic pathways in the brain, dual-probe microdialysis was used to pharmacologically block H₃ receptors in the TMN. Perfusion of the TMN with ABT-239 (10 μM) increased histamine release from the TMN, NBM, and cortex, but not from the striatum or NAcc. When administered locally, ABT-239 increased histamine release from the NBM, but not from the NAcc. Systemic as well as intra-TMN administration of ABT-239 increased c-Fos expression in the NBM, and cortex, but not in the striatum or NAcc. Thus, as defined by their sensitivity to ABT-239, histaminergic neurons establish distinct pathways according to their terminal projections, and can differentially modulate neurotransmitter release in a brain region-specific manner. This implies independent functions of subsets of histamine neurons according to their terminal projections, with relevant consequences for the development of specific compounds that affect only subsets of histamine neurones, thus increasing target specificity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2013.01.021DOI Listing

Publication Analysis

Top Keywords

histamine release
16
c-fos expression
12
histamine
11
histamine h₃
8
h₃ receptor
8
acetylcholine histamine
8
increased c-fos
8
increased histamine
8
nbm cortex
8
cortex striatum
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!