Carbon storage in a heavy clay soil landfill site after biosolid application.

Sci Total Environ

Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, SA 5095, Australia; Cooperative Research Centre for Contaminants Assessment and Remediation of the Environment (CRC CARE), University of South Australia, SA 5095, Australia. Electronic address:

Published: November 2013

Applying organic amendments including biosolids and composts to agricultural land could increase carbon (C) storage in soils and contribute significantly to the reduction of greenhouse gas emissions. Although a number of studies have examined the potential value of biosolids as a soil conditioner and nutrient source, there has been only limited work on the impact of biosolid application on C sequestration in soils. The objective of this study was to examine the potential value of biosolids in C sequestration in soils. Two types of experiments were conducted to examine the effect of biosolid application on C sequestration. In the first laboratory incubation experiment, the rate of decomposition of a range of biosolid samples was compared with other organic amendments including composts and biochars. In the second field experiment, the effect of biosolids on the growth of two bioenergy crops, Brassica juncea (Indian mustard) and Helianthus annuus (sunflower) on a landfill site was examined in relation to biomass production and C sequestration. The rate of decomposition varied amongst the organic amendments, and followed: composts>biosolids>biochar. There was a hundred fold difference in the rate of decomposition between biochar and other organic amendments. The rate of decomposition of biosolids decreased with increasing iron (Fe) and aluminum (Al) contents of biosolids. Biosolid application increased the dry matter yield of both plant species (by 2-2.5 fold), thereby increasing the biomass C input to soils. The rate of net C sequestration resulting from biosolid application (Mg C ha(-1) yr(-1) Mg(-1) biosolids) was higher for mustard (0.103) than sunflower (0.087). Biosolid application is likely to result in a higher level of C sequestration when compared to other management strategies including fertilizer application and conservation tillage, which is attributed to increased microbial biomass, and Fe and Al oxide-induced immobilization of C.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2012.12.093DOI Listing

Publication Analysis

Top Keywords

biosolid application
24
organic amendments
16
rate decomposition
16
carbon storage
8
landfill site
8
amendments including
8
potential biosolids
8
application sequestration
8
sequestration soils
8
biosolid
7

Similar Publications

Analysis of multi-class unregulated organic compounds in soil and biosolids using LC-MS/MS.

Environ Pollut

January 2025

Department of Agronomy, Purdue University, West Lafayette, Indiana 47907, USA; Department of Environmental & Ecological Engineering, Purdue University, West Lafayette, Indiana 47907, USA; Ecological Sciences & Engineering Interdisciplinary Graduate Program, Purdue University, West Lafayette, Indiana 47907, USA.

Numerous unregulated organic compounds (UOCs) including pharmaceuticals, opioids, and personal care products (PCPs) end up in wastewater. UOC presence in biosolids (a wastewater treatment byproduct), which are applied to soil for different reasons raises environmental and health risk concerns. In this study, two multi-class extraction methods were developed and validated to target 111 UOCs from 8 different major families simultaneously in biosolids and biosolids-impacted soil.

View Article and Find Full Text PDF

Microbial communities in biosolids-amended soils: A critical review of high-throughput sequencing approaches.

J Environ Manage

January 2025

Commonwealth Scientific and Industrial Research Organisation, Environment Research Unit, Urrbrae, South Australia, Australia.

Sustainable reuse of treated wastewater sludge or biosolids in agricultural production requires comprehensive understanding of their risks and benefits. Microbes are central mediators of many biosolids-associated risks and benefits, however understanding of their responses to biosolids remains minimal. Application of biosolids to soils amounts to a coalescence of two distinct microbial communities adapted to vastly different matrices.

View Article and Find Full Text PDF

Sources and Pathways of PFAS Occurrence in Water Sources: Relative Contribution of Land-Applied Biosolids in an Agricultural Dominated Watershed.

Environ Sci Technol

January 2025

Department of Agronomy, Ecological Sciences & Engineering Interdisciplinary Graduate Program, Purdue University, 915 Mitch Daniels Blvd, West Lafayette, Indiana 47907, United States.

This study evaluated PFAS occurrence in rural well water and surface water relative to land application of biosolids in a tile-drained agriculture-dominated watershed. Spatial data were used to identify potentially vulnerable rural wells based on their proximity to biosolid-permitted land and location with respect to groundwater flow. Water was collected from 103 private wells in Greater Tippecanoe County Indiana and 168 surface water locations within the Region of the Great Bend of the Wabash River watershed.

View Article and Find Full Text PDF

PFAS in agroecosystems: Sources, impacts, and opportunities for mitigating risks to human and ecosystem health.

J Environ Qual

January 2025

Energy and Environmental Sustainability Laboratories, Institute for Energy and the Environment, The Pennsylvania State University, University Park, Pennsylvania, USA.

Concerns regarding per- and polyfluoroalkyl substances (PFAS) and their precursors have driven increased research into their sources, impacts, and mitigation strategies, aiming to reduce their prevalence in the environment. While much of this research has centered on known large sources of PFAS (e.g.

View Article and Find Full Text PDF

Efforts addressing sludge management, food security, and resource recovery have led to novel approaches in these areas. Electrically assisted conversion of sludge stands out as a promising technology for sewage sludge valorization, producing nitrogen and phosphorus-based fertilizers. The adoption of this technology, which could lead to a fertilizer circular economy, holds the potential to catalyze a transformative change in wastewater treatment facilities toward process intensification, innovation, and sustainability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!