Crystal structure databases offer ample opportunities to derive small molecule conformation preferences, but the derived knowledge is not systematically applied in drug discovery research. We address this gap by a comprehensive and extendable expert system enabling quick assessment of the probability of a given conformation to occur. It is based on a hierarchical system of torsion patterns that cover a large part of druglike chemical space. Each torsion pattern has associated frequency histograms generated from CSD and PDB data and, derived from the histograms, traffic-light rules for frequently observed, rare, and highly unlikely torsion ranges. Structures imported into the corresponding software are annotated according to these rules. We present the concept behind the tree of torsion patterns, the design of an intuitive user interface for the management and usage of the torsion library, and we illustrate how the system helps analyze and understand conformation properties of substructures widely used in medicinal chemistry.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm3016816DOI Listing

Publication Analysis

Top Keywords

druglike chemical
8
chemical space
8
torsion patterns
8
torsion
6
torsion angle
4
angle preferences
4
preferences druglike
4
space comprehensive
4
comprehensive guide
4
guide crystal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!