Diverse captive non-human primates with phytanic acid-deficient diets rich in plant products have substantial phytanic acid levels in their red blood cells.

Lipids Health Dis

Department of Biochemistry and Molecular Biology, Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90089, USA.

Published: February 2013

AI Article Synopsis

  • Captive apes and Old World monkeys show higher levels of red blood cell (RBC) phytanic acid (PA) compared to humans on PA-deficient diets, suggesting different metabolic pathways.
  • Research into thirteen genes related to PA metabolism reveals unique adaptations in non-human primates, including variations in evolutionary rates across species.
  • The findings indicate that NHPs may obtain PA through the breakdown of chlorophyll in their diets, potentially using RBC PA levels as a marker for their digestive health.

Article Abstract

Background: Humans and rodents with impaired phytanic acid (PA) metabolism can accumulate toxic stores of PA that have deleterious effects on multiple organ systems. Ruminants and certain fish obtain PA from the microbial degradation of dietary chlorophyll and/or through chlorophyll-derived precursors. In contrast, humans cannot derive PA from chlorophyll and instead normally obtain it only from meat, dairy, and fish products.

Results: Captive apes and Old world monkeys had significantly higher red blood cell (RBC) PA levels relative to humans when all subjects were fed PA-deficient diets. Given the adverse health effects resulting from PA over accumulation, we investigated the molecular evolution of thirteen PA metabolism genes in apes, Old world monkeys, and New world monkeys. All non-human primate (NHP) orthologs are predicted to encode full-length proteins with the marmoset Phyh gene containing a rare, but functional, GA splice donor dinucleotide. Acox2, Scp2, and Pecr sequences had amino acid positions with accelerated substitution rates while Amacr had significant variation in evolutionary rates in apes relative to other primates.

Conclusions: Unlike humans, diverse captive NHPs with PA-deficient diets rich in plant products have substantial RBC PA levels. The favored hypothesis is that NHPs can derive significant amounts of PA from the degradation of ingested chlorophyll through gut fermentation. If correct, this raises the possibility that RBC PA levels could serve as a biomarker for evaluating the digestive health of captive NHPs. Furthermore, the evolutionary rates of the several genes relevant to PA metabolism provide candidate genetic adaptations to NHP diets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3571895PMC
http://dx.doi.org/10.1186/1476-511X-12-10DOI Listing

Publication Analysis

Top Keywords

rbc levels
12
diverse captive
8
diets rich
8
rich plant
8
plant products
8
products substantial
8
phytanic acid
8
red blood
8
apes monkeys
8
pa-deficient diets
8

Similar Publications

The etiology of rheumatoid arthritis (RA) is multifaceted. One of the hypothesized pathways that results in the progression of RA is regulatory T cell (Treg) dysfunction. The pro-osteoclastogenic and immunogenic characteristics of microribonucleic acid (microRNA)-21 (miR-21) suggest its role in RA progression.

View Article and Find Full Text PDF

Risk Factors Predicting Outcomes in Advanced Upper Gastrointestinal Cancers Treated With Immune Checkpoint Inhibitors.

Gastroenterology Res

December 2024

Division of Medical Oncology, Department of Internal Medicine, The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA.

Background: Immune checkpoint inhibitors (ICIs) have moved to the frontline in recent years to manage upper gastrointestinal (UGI) tumors, such as esophageal and gastric cancers. This retrospective review sheds light on real-world data on ICI-treated UGI tumors to identify risk factors (clinical and pathological) impacting the outcome other than traditional biomarkers (programmed cell death ligand 1 (PD-L1) or microsatellite instability status).

Methods: Patients with UGI tumors who received at least one dose of ICI for stage IV or recurrent disease between January 1, 2015, and July 31, 2021, at The Ohio State University were included in the study.

View Article and Find Full Text PDF

Red blood cells (RBC), are the most unique and abundant cell types. The diameter of RBCs is 7-8 μm. They have an essential role in transporting circulatory oxygen.

View Article and Find Full Text PDF

Background: Although alloimmunization risk of pathogen-reduced (PR) platelets has been studied, the risk has not been reported with PR red blood cells (RBCs).

Study Design And Methods: In a Phase III, randomized, controlled trial (Red Cell Pathogen Inactivation), cardiac or thoracic-aorta surgery patients were randomized to transfusion with amustaline/glutathione PR versus conventional RBCs. Pre-transfusion and Day 28 samples were evaluated for Human leukocyte antigen (HLA) Class I and Class II antibodies at low, medium, and high cutoff values.

View Article and Find Full Text PDF

A New Anti-Interfering Platelet Counting Technology Utilizing Conventional Impedance and White Blood Cell Differential Channel.

Int J Lab Hematol

January 2025

Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China.

Introduction: Accurate platelet (PLT) counting is crucial for disease diagnosis and treatment, especially under the condition of thrombocytopenia and platelet transfusion. A few PLT counting approaches have been established including impedance and fluorescent methods. The impedance PLT counting (PLT-I) approach could be interfered by small non-PLT particles in the blood, such as RBC/WBC fragments, microcytes, bacteria, and cryoglobulins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!