An extra peptide within the catalytic module of a β-agarase affects the agarose degradation pattern.

J Biol Chem

State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China.

Published: March 2013

AI Article Synopsis

  • Agarase is an enzyme that breaks down agarose into oligosaccharides, with its glycoside hydrolase (GH) module being crucial for this activity.
  • The agaG4 gene from the Flammeovirga strain MY04 encodes a unique 503-amino acid protein, AgaG4, which has an additional peptide in its GH module compared to other known agarases.
  • Modifying AgaG4 by removing the extra peptide showed that it affected the enzyme's ability to degrade agarose, optimal temperature, and substrate cleavage pattern, highlighting the importance of a specific residue, tyrosine 276, in its activity.

Article Abstract

Agarase hydrolyzes agarose into a series of oligosaccharides with repeating disaccharide units. The glycoside hydrolase (GH) module of agarase is known to be responsible for its catalytic activity. However, variations in the composition of the GH module and its effects on enzymatic functions have been minimally elucidated. The agaG4 gene, cloned from the genome of the agarolytic Flammeovirga strain MY04, encodes a 503-amino acid protein, AgaG4. Compared with elucidated agarases, AgaG4 contains an extra peptide (Asn(246)-Gly(302)) within its GH module. Heterologously expressed AgaG4 (recombinant AgaG4; rAgaG4) was determined to be an endo-type β-agarase. The protein degraded agarose into neoagarotetraose and neoagarohexaose at a final molar ratio of 1.5:1. Neoagarooctaose was the smallest substrate for rAgaG4, whereas neoagarotetraose was the minimal degradation product. Removing the extra fragment from the GH module led to the inability of the mutant (rAgaG4-T57) to degrade neoagarooctaose, and the final degradation products of agarose by the truncated protein were neoagarotetraose, neoagarohexaose, and neoagarooctaose at a final molar ratio of 2.7:2.8:1. The optimal temperature for agarose degradation also decreased to 40 °C for this mutant. Bioinformatic analysis suggested that tyrosine 276 within the extra fragment was a candidate active site residue for the enzymatic activity. Site-swapping experiments of Tyr(276) to 19 various other amino acids demonstrated that the characteristics of this residue were crucial for the AgaG4 degradation of agarose and the cleavage pattern of substrate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3611020PMC
http://dx.doi.org/10.1074/jbc.M112.412247DOI Listing

Publication Analysis

Top Keywords

extra peptide
8
agarose degradation
8
neoagarotetraose neoagarohexaose
8
final molar
8
molar ratio
8
extra fragment
8
neoagarooctaose final
8
agarose
6
agag4
6
module
5

Similar Publications

Immunogenic cell death (ICD) of tumor cells, which is characterized by releasing immunostimulatory "find me" and "eat me" signals, expressing proinflammatory cytokines and providing personalized and broad-spectrum tumor antigens draws increasing attention in developing a tumor vaccine. In this study, we aimed to investigate whether the influenza virus (IAV) is efficient enough to induce ICD in tumor cells and an extra modification of IAV components such as hemeagglutinin (HA) will be helpful for the ICD-induced cells to elicit robust antitumor effects; in addition, to evaluate whether the membrane-engineering polylactic coglycolic acid nanoparticles (PLGA NPs) simulating ICD immune stimulation mechanisms hold the potential to be a promising vaccine candidate, a mouse melanoma cell line (B16-F10 cell) was infected with IAV rescued by the reverse genetic system, and the prepared cells and membrane-modified PLGA NPs were used separately to immunize the melanoma-bearing mice. IAV-infected tumor cells exhibit dying status, releasing high mobility group box-1 (HMGB1) and adenosine triphosphate (ATP), and exposing calreticulin (CRT), IAV hemeagglutinin (HA), and tumor antigens like tyrosinase-related protein 2 (TRP2).

View Article and Find Full Text PDF

Repurposing bosentan as an anticancer agent: EGFR/ERK/c-Jun modulation inhibits NSCLC tumor growth.

Fundam Clin Pharmacol

February 2025

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.

Drug repurposing of well-established drugs to be targeted against lung cancer has been a promising strategy. Bosentan is an endothelin 1 (ET-1) blocker widely used in pulmonary hypertension. The current experiment intends to inspect the anticancer and antiangiogenic mechanism of bosentan targeting epidermal growth factor receptor (EGFR) /extra-cellular Signal Regulated Kinase (ERK) /c-Jun/vascular endothelial growth factor (VEGF) carcinogenic pathway.

View Article and Find Full Text PDF

Background: Cryptorchidism is the absence of one or both testicles in the scrotum at birth, being a risk factor for testis cancer and infertility. The most effective method to treat cryptorchidism is orchiopexy, followed by human chorionic gonadotropin (hCG) therapy; however, a portion of treated patients do not show a significant improvement in testis volume and vascularization after adjuvant therapy.

Methods: In this study, we generated an in vitro model to predict the patient response to hCG by cultivating and treating primary cells derived from five cryptorchid patients' biopsies of gubernaculum testis, the ligament that connects the testicle to the scrotum.

View Article and Find Full Text PDF

Elevated glucose levels at the fetal-maternal interface are associated with placental trophoblast dysfunction and increased incidence of pregnancy complications. Trophoblast cells predominantly utilize glucose as an energy source, metabolizing it through glycolysis in the cytoplasm and oxidative respiration in the mitochondria to produce ATP. The TGFβ1/SMAD2 signaling pathway and the transcription factors PPARγ, HIF1α, and AMPK are key regulators of cell metabolism and are known to play critical roles in extravillous trophoblast cell differentiation and function.

View Article and Find Full Text PDF

Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and deadly type of cancer, with an extremely low five-year overall survival rate. To date, current treatment options primarily involve various chemotherapies, which often prove ineffective and are associated with substantial toxicity. Furthermore, immunotherapies utilizing checkpoint inhibitors have shown limited efficacy in this context, highlighting an urgent need for novel therapeutic strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!