Background: There is a large body of literature on competitive interactions among plants, but many studies have only focused on above-ground interactions and little is known about root-root dynamics between interacting plants. The perspective on possible mechanisms that explain the outcome of root-root interactions has recently been extended to include non-resource-driven mechanisms (as well as resource-driven mechanisms) of root competition and positive interactions such as facilitation. These approaches have often suffered from being static, partly due to the lack of appropriate methodologies for in-situ non-destructive root characterization.
Scope: Recent studies show that interactive effects of plant neighbourhood interactions follow non-linear and non-additive paths that are hard to explain. Common outcomes such as accumulation of roots mainly in the topsoil cannot be explained solely by competition theory but require a more inclusive theoretical, as well as an improved methodological framework. This will include the question of whether we can apply the same conceptual framework to crop versus natural species.
Conclusions: The development of non-invasive methods to dynamically study root-root interactions in vivo will provide the necessary tools to study a more inclusive conceptual framework for root-root interactions. By following the dynamics of root-root interactions through time in a whole range of scenarios and systems, using a wide variety of non-invasive methods, (such as fluorescent protein which now allows us to separately identify the roots of several individuals within soil), we will be much better equipped to answer some of the key questions in root physiology, ecology and agronomy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3698385 | PMC |
http://dx.doi.org/10.1093/aob/mcs296 | DOI Listing |
Int J Mol Sci
June 2024
Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia.
Higher-fungi xylotrophic basidiomycetes are known to be the reservoirs of bioactive metabolites. Currently, a great deal of attention has been paid to the exploitation of mycelial fungi products as an innovative alternative in crop protection. No data exist on the mechanisms behind the interaction between xylotrophic mushrooms' glycopolymeric substances and plants.
View Article and Find Full Text PDFPlant species diversity and identity can significantly modify litter decomposition, but the underlying mechanisms remain elusive, particularly for root litter. Here, we aimed to disentangle the mechanisms by which plant species diversity alters root litter decomposition. We hypothesised that (1) interactions between species in mixed communities result in litter that decomposes faster than litter produced in monocultures; (2) litter decomposition is accelerated in the presence of living plants, especially when the litter and living plant identities are matched (known as home-field advantage).
View Article and Find Full Text PDFPlant Soil
June 2023
School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009 Australia.
Background And Aims: Belowground interspecific plant facilitation is supposed to play a key role in enabling species co-existence in hyperdiverse ecosystems in extremely nutrient-poor, semi-arid habitats, such as woodlands in southwestern-Australia. Manganese (Mn) is readily mobilised by cluster root activity in most soils and accumulates in mature leaves of native Australian plant species without significant remobilisation during leaf senescence. We hypothesised that neighbouring shrubs are facilitated in terms of Mn uptake depending on distance to surrounding cluster root-forming trees.
View Article and Find Full Text PDFPlants (Basel)
February 2024
College of Ecology and Environment, Xinjiang University, Urumqi 830017, China.
The root traits and response strategies of plants play crucial roles in mediating interactions between plant root systems. Current research on the role of root exudates as underground chemical signals mediating these interactions has focused mainly on crops, with less attention given to desert plants in arid regions. In this study, we focused on the typical desert plant and conducted a pot experiment using three root isolation methods (plastic film separation, nylon mesh separation, and no separation).
View Article and Find Full Text PDFEco Environ Health
March 2023
State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China.
Forests are highly productive ecosystems that contribute to biogeochemical cycles of carbon and nitrogen, through which it regulates climate and global change. Forests are also spatially highly heterogeneous ecosystems that comprise a multitude of microbial-mediated reactive interfaces. These are mainly the root-soil interface, litter-soil interface, root-root interface, and plant-atmosphere interface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!