Collision cell pressure effect on CID spectra pattern using triple quadrupole instruments: a RRKM modeling.

J Mass Spectrom

UPMC, Institut Parisien de Chimie Moléculaire, UMR 7201, Paris VI, 75252, Paris cedex 05, France.

Published: February 2013

Control of the ion internal energy in mass spectrometry is needed to establish a workable mass spectral library. The purpose of this study is to understand and to compare the pressure effects on the collision-induced dissociation (CID) spectrum pattern recorded using triple quadrupole instruments. The monoprotonated Leucine enkephalin [YGGFL, H(+)] was used as a thermometer molecule to calibrate the electrospray ionization (ESI) and the CID internal energies deposited on the molecular species and the time scale of ion decompositions. The survival yield and the ratio of a(4)/b(4) fragment ions were mainly monitored. The energy uptake for the ESI source geometry used in our study has no impact on the CID spectrum fingerprint. The collision cell pressure for the [YGGFL, H(+)] has a major influence on the SY curves slope and on the experimental time scale. To demonstrate the pressure effect on internal energy distribution, three models (threshold, thermal and collisional) based on RRKM theory were built using the Masskinetics software. As a result, the limit of each model is discussed, and the investigation demonstrates that the thermal model, using truncated Maxwell-Boltzmann internal energy distribution, is well-suited for simulating the experimental data at high pressure widely used in the analytical conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jms.3143DOI Listing

Publication Analysis

Top Keywords

internal energy
12
collision cell
8
cell pressure
8
triple quadrupole
8
quadrupole instruments
8
cid spectrum
8
[yggfl h+]
8
time scale
8
energy distribution
8
pressure
5

Similar Publications

Characterization of a simple gas expansion ion source for intense pulses of subthermal molecular ions.

Rev Sci Instrum

January 2025

Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany.

We describe a simple gas expansion ion source based on static discharge voltages and a commercially available pulsed valve. The discharge is initiated by the gas pulse itself between two high voltage electrodes, without the need for fast voltage switches or complex timing schemes. The ion source very reliably produces intense bursts of molecular ions (with currents exceeding 100 μA during the pulse-on phase) with only minor pulse-to-pulse variations in intensity and pulse shape.

View Article and Find Full Text PDF

Metabolomic Analysis of the Effects of Canagliflozin on HFpEF Rats and Its Underlying Mechanism.

Endocr Metab Immune Disord Drug Targets

January 2025

Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China.

Background: Heart failure with preserved ejection fraction (HFpEF) represents a challenging cardiovascular condition characterized by normal systolic function but impaired diastolic performance. Despite its increasing prevalence, therapeutic options remain limited. This study investigated the metabolic effects of canagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, on cardiac function and energy metabolism in HFpEF.

View Article and Find Full Text PDF

Transgenerational Plasticity of Maternal Hemolymph Trehalose in Aphids.

Arch Insect Biochem Physiol

January 2025

College of Agriculture, Ibaraki University, Inashiki, Japan.

Aphids exhibit a unique reproductive strategy known as pseudoplacental viviparity, in which embryos develop internally and are thought to receive nutrients such as sugars and amino acids directly from the maternal hemolymph through an ovariole sheath, bypassing the need for traditional yolk storage. This system enables viviparous aphids to adapt to diverse and potentially stressful environments by transmitting maternal environmental cues that influence transgenerational plasticity. However, the mechanisms underlying this nutrient-mediated plasticity are poorly understood.

View Article and Find Full Text PDF

Although the green light emission of Tb ions can be effectively improved by utilizing energy transfer from Eu to Tb ions, obtaining phosphors with high quantum efficiency remains a major problem. Here, we have achieved a novel apatite-type structure CaLa(PO)O (CLPO) containing Eu and Tb ions. The CLPO:Eu is capable of being effectively excited by near-ultraviolet light and emits blue light at about 460 nm.

View Article and Find Full Text PDF

BiS/BiO(OH) nanorods with internal electric field throughout the entire bulk phase as photoelectrochemical sensing platforms for CYFRA21-1 immunoassay.

Anal Chim Acta

February 2025

Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, 250022, Jinan, PR China; Department of Chemistry, Sungkyunkwan University, 16419, Suwon, Republic of Korea. Electronic address:

Photoelectrochemical (PEC) immunosensors are highly promising tools for monitoring biochemical molecules. Constructing high-performance heterojunctions is a general method to improve the sensitivity of PEC immunosensors. The internal electric field (IEF) formed at the heterojunction interface plays a crucial role in coordinating the separation of photogenerated carriers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!