Acetylation limits 53BP1 association with damaged chromatin to promote homologous recombination.

Nat Struct Mol Biol

Department of Cancer Biology, Abramson Family Cancer Research Institute, Basser Research Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

Published: March 2013

AI Article Synopsis

Article Abstract

The pathogenic sequelae of BRCA1 mutation in human and mouse cells are mitigated by concomitant deletion of 53BP1, which binds histone H4 dimethylated at Lys20 (H4K20me2) to promote nonhomologous end joining, suggesting that a balance between BRCA1 and 53BP1 regulates DNA double strand-break (DSB) repair mechanism choice. Here we document that acetylation is a key determinant of this balance. TIP60 acetyltransferase deficiency reduced BRCA1 at DSB chromatin with commensurate increases in 53BP1, whereas HDAC inhibition yielded the opposite effect. TIP60-dependent H4 acetylation diminished 53BP1 binding to H4K20me2 in part through disruption of a salt bridge between H4K16 and Glu1551 in the 53BP1 Tudor domain. Moreover, TIP60 deficiency impaired homologous recombination and conferred sensitivity to PARP inhibition in a 53BP1-dependent manner. These findings demonstrate that acetylation in cis to H4K20me2 regulates relative BRCA1 and 53BP1 DSB chromatin occupancy to direct DNA repair mechanism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3594358PMC
http://dx.doi.org/10.1038/nsmb.2499DOI Listing

Publication Analysis

Top Keywords

homologous recombination
8
brca1 53bp1
8
repair mechanism
8
dsb chromatin
8
53bp1
7
acetylation
4
acetylation limits
4
limits 53bp1
4
53bp1 association
4
association damaged
4

Similar Publications

Development of a conditional plasmid for gene deletion in non-model strains.

Appl Environ Microbiol

January 2025

Department of Microbiology & Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA.

is an opportunistic pathogen with four subspecies: (FNN), (FNV), (FNP), and (FNA), each with distinct disease potentials. Research on fusobacterial pathogenesis has mainly focused on the model strain ATCC 23726 from FNN. However, this narrow focus may overlook significant behaviors of other FNN strains and those from other subspecies, given the genetic and phenotypic diversity within .

View Article and Find Full Text PDF

PMT4 Is Involved in -Glycosylation, Cell Wall Organization, Membrane Integrity, and Virulence.

J Fungi (Basel)

January 2025

Laboratorio de Biología Molecular y Bioquímica, Departamento de Biología, Universidad de La Serena, La Serena 1700000, Chile.

Proteins found within the fungal cell wall usually contain both - and -oligosaccharides. -glycosylation is the process where these oligosaccharides (hereinafter: glycans) are attached to asparagine residues, while in -glycosylation the glycans are covalently bound to serine or threonine residues. The family is grouped into , , and subfamilies.

View Article and Find Full Text PDF

Immune checkpoint inhibitors (ICIs) have revolutionized treatment for several tumor indications without demonstrated benefit for ovarian cancer patients. To improve the therapeutic ratio of ICIs in ovarian cancer patients, several different clinical trials are testing combinations with poly (ADP-ribose) polymerase (PARP) inhibitors. Comparing the immunomodulatory effects of clinically advanced PARP inhibitors may help to identify the best partner to combine with ICIs.

View Article and Find Full Text PDF

Squamate reptiles may have compensated for the lack of γδTCR with a duplication of the TRB locus.

Front Immunol

January 2025

Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, United States.

Squamate reptiles are amongst the most successful terrestrial vertebrate lineages, with over 10,000 species across a broad range of ecosystems. Despite their success, squamates are also amongst the least studied lineages immunologically. Recently, a universal lack of γδ T cells in squamates due to deletions of the genes encoding the T cell receptor (TCR) γ and δ chains was discovered.

View Article and Find Full Text PDF

Background: Thymidine kinases (TKs) are key enzymes involved in DNA synthesis and repair, with alterations in their expression associated with various cancers. Thymidine kinase 1 (TK1) and TK2 are cytosolic enzyme proteins that catalyze the addition of a gamma-phosphate group to thymidine. The existing literature on TK1 in cervical squamous cell carcinoma (CESC) fails to address the clinical role of TK1 overexpression and its possible molecular mechanism in CESC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!