Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Kinship relation and, in particular, paternity probability estimation using a Bayesian approach require the input of a priori probabilities of different hypotheses. In practical case work, a priori probabilities or priors, for short, must often be estimated using only common sense and symmetry arguments because in most cases, there is no evidence-based information on which the priors may be determined. In contrast to the accuracy of the likelihood probabilities or the likelihood ratios, the precision of the priors is usually very poor. Thus, a quantitative estimation of the priors' influence on the paternity probability is desirable. This article presents exact formulae to define sharp minimum and maximum boundaries of posterior probabilities as a function of prior boundaries which may be applied in kinship cases with varying numbers of hypotheses and also presents two case examples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00414-013-0827-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!