Objective: Office workers with high levels of overcommitment and low levels of reward are thought to be more prone to arm-wrist-hand symptoms, possibly through a higher internal physical exposure. The aim of this study was to examine the effects of high overcommitment and low reward on (i) forearm muscle activity, (ii) wrist posture and kinematics, and (iii) forces applied to computer input devices during computer work in an actual work setting.
Methods: We continuously measured wrist extensor muscle activity, wrist posture and kinematics, and forces applied to the keyboard and mouse for two hours during the daily work of 120 office workers with four different levels of overcommitment and reward (low-high, high-high, low-low, and high-low).
Results: Wrist velocities and accelerations in radial-ulnar direction were higher for workers with high compared to low overcommitment, while their wrist range of motion was similar, possibly indicating a higher work pace. Wrist extensor muscle activity and forces applied to the keyboard and mouse were not increased by high overcommitment and/or low reward.
Conclusion: Overall, our findings provide little support for the proposed pathway of high overcommitment and low reward in the development of arm-wrist-hand symptoms through a higher internal physical exposure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5271/sjweh.3346 | DOI Listing |
J Hand Ther
January 2025
Department of Physical Therapist, Universidade Federal de São Carlos, São Carlos, SP, Brazil.
Background: Pectoralis minor (PM) shortening and posterior shoulder tightness (PST) are considered potential soft tissue alterations associated with rotator cuff related shoulder pain (RCRSP). Yet, their precise contribution to pain and disability remains unclear.
Purpose: To explore the association between both PM length and PST and self-reported shoulder pain and disability in individuals with and without RCRSP.
J Nutr
January 2025
School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China. Electronic address:
Background: Sarcopenia is an age-related, progressive, and systemic skeletal muscle disorder that can lead to numerous adverse outcomes. Animal studies have shown that sesame can enhance skeletal muscle blood flow and improve physical performance. However, no studies have yet explored the association between sesame consumption and the incidence of sarcopenia in the general population.
View Article and Find Full Text PDFCell Calcium
December 2024
Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, NV, 89557, USA. Electronic address:
Interstitial cells of Cajal in the plane of the myenteric plexus (ICC-MY) serve as electrical pacemakers in the stomach and small intestine. A similar population of cells is found in the colon, but these cells do not appear to generate regular slow wave potentials, as characteristic in more proximal gut regions. Ca handling mechanisms in ICC-MY of the mouse proximal colon were studied using confocal imaging of muscles from animals expressing GCaMP6f exclusively in ICC.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
College of Life Science, Henan Normal University, Xinxiang 453007, China. Electronic address:
The widespread application of quantum dots (QDs) in recent years has raised concerns about potential environmental and human health risks. Although the toxicity of cadmium telluride quantum dots (CdTe QDs) has been partially studied, their effects on stem cells, tissue regeneration, neurodevelopment, and neurobehavioral toxicity remain unclear. This study aimed to investigate the combined toxic effects and mechanisms of CdTe QDs on planarians at the individual, tissue, cellular, and molecular levels.
View Article and Find Full Text PDFCurr Top Med Chem
January 2025
Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India.
Background: Several chemical studies described the physiological efficacy of 1,4- dihydropyridines (DHPs). DHPs bind to specific sites on the α1 subunit of L-type calcium channels, where they demonstrate a more pronounced inhibition of Ca2+ influx in vascular smooth muscle compared to myocardial tissue. This selective inhibition is the basis for their preferential vasodilatory action on peripheral and coronary arteries, a characteristic that underlies their therapeutic utility in managing hypertension and angina.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!