Autotaxin (ATX) has been reported to act as a motility and growth factor in a variety of cancer cells. The ATX protein acts as a secreted lysophospholipase D by converting lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA), which signals via G-protein-coupled receptors and has important functions in cell migration and proliferation. This study demonstrates that ATX expression is specifically upregulated and functionally active in acute myeloid leukemia (AML) harboring an internal tandem duplication (ITD) mutation of the FLT3 receptor gene. Moreover, ATX expression was also found in normal human CD34+ progenitor cells and selected myeloid and lymphoid subpopulations. Enforced expression of mutant FLT3-ITD by retroviral vector transduction increased ATX mRNA in selected cell lines, whereas inhibition of FLT3-ITD signaling by sublethal doses of PKC412 or SU5614 led to a significant downregulation of ATX mRNA and protein levels. In the presence of LPC, ATX expression significantly increased proliferation. LPA induced proliferation, regardless of ATX expression, and induced chemotaxis in all tested human leukemic cell lines and human CD34(+) progenitors. LPC increased chemotaxis only in cells with high expression of endogenous ATX by at least 80%, demonstrating the autocrine action of ATX. Inhibition of ATX using a small molecule inhibitor selectively induced killing of ATX-expressing cell lines and reduced motility in these cells. Our data suggest that the production of bioactive LPA through ATX is involved in controlling proliferation and migration during hematopoiesis and that deregulation of ATX contributes to the pathogenesis of AML.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.exphem.2013.01.007 | DOI Listing |
Front Immunol
January 2025
Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea.
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by joint swelling, pain, and bone remodeling. We previously reported that autotaxin (ATX) deficiency disrupts lipid rafts in macrophages. Lipid raft disruption results in the dysregulation of RANK signaling, which is crucial for osteoclastogenesis and the pathogenesis of RA.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González 2, 41012 Seville, Spain.
Anatoxin-a (ATX-a) is a cyanotoxin whose toxicological profile has been underinvestigated in comparison to other cyanotoxins such as microcystins (MCs) or cylindrospermopsin (CYN). However, its wide distribution, occurrence, and toxic episodes justify more attention. It is classified as a neurotoxin, but it has also been reported to affect other organs and systems.
View Article and Find Full Text PDFCancers (Basel)
November 2024
Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
: To examine the regulatory role of PCNA in MM, we have targeted PCNA with the experimental drug ATX-101 in three commercial cell lines (JJN3, RPMI 1660, AMO) and seven in-house patient-derived cell lines with a more primary cell-like phenotype (TK9, 10, 12, 13, 14, 16 and 18) and measured the systemic molecular effects. : We have used a multi-omics untargeted approach, measuring the gene expression (transcriptomics), a subproteomics approach measuring mainly signalling proteins and proteins in complex with these (signallomics) and quantitative metabolomics. These results are supplemented with traditional analysis, e.
View Article and Find Full Text PDFMol Cancer Ther
November 2024
Cancer Research Horizons, Cambridge, United Kingdom.
Autotaxin (ATX), encoded by ENPP2, is a clinical target in pancreatic ductal adenocarcinoma (PDAC). ATX catalyzes the production of lysophosphatidic acid (LPA), an important regulator within the tumor microenvironment (TME), yet the pro-tumorigenic action of the ATX/LPA axis in PDAC remains unclear. Here, by interrogating patient samples and cell line datasets, we show that the PDAC TME, rather than cancer cells, is responsible for the majority of ENPP2 expression, and highlight a key role for cancer associated fibroblast (CAF)-derived ATX in autocrine and paracrine pro-tumorigenic signaling.
View Article and Find Full Text PDFCell Commun Signal
November 2024
Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea.
Background: Resistance acquired after radiotherapy is directly related to the failure of various cancer treatments, including GBM. Because the mechanism for overcoming radioresistance has not yet been clearly identified, the development of diagnostic and therapeutic markers to treat radioresistance is necessary. Since increased expression of stemness- and EMT-related markers are reported to be closely correlated with radioresistance, research is underway to develop new drugs targeting these factors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!