Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We shed light on the specific hydration structure around a zinc ion of nanosolution restricted in a cylindrical micropore of single-wall carbon nanotube (SWNT) by comparison with the structure restricted in a cylindrical mesopore of multi-wall carbon nanotube (MWNT) and that of bulk aqueous solution. The average micropore width of open-pore SWNT was 0.87 nm which is equivalent to the size of a hydrated zinc ion having 6-hydrated water molecules. We could impregnate the zinc ions into the micropore of SWNT with negligible amounts of ion-exchanged species on surface functional groups by the appropriate oxidation followed by heat treatment under an inert condition. The results of X-ray absorption fine structure (XAFS) spectra confirmed that the proportion of dissolved species in nanospaces against the total adsorbed amounts of zinc ions on the open-pore SWNT and MWNT were 44 and 61%, respectively, indicating the formation of a dehydrated structure in narrower nanospaces. The structure parameters obtained by the analysis of XAFS spectra also indicate that the dehydrated and highly compressed hydration structure can be stably formed inside the cylindrical micropore of SWNT where the structure is different from that inside the slit-shaped micropore whose pore width is less than 1 nm. Such a unique structure needs not only a narrow micropore geometry which is equivalent to the size of a hydrated ion but also the cylindrical nature of the pore.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2nr33681b | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!