A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Specific functioning of Cav3.2 T-type calcium and TRPV1 channels under different types of STZ-diabetic neuropathy. | LitMetric

Streptozotocin (STZ)-induced type 1 diabetes in rats leads to the development of peripheral diabetic neuropathy (PDN) manifested as thermal hyperalgesia at early stages (4th week) followed by hypoalgesia after 8weeks of diabetes development. Here we found that 6-7 week STZ-diabetic rats developed either thermal hyper- (18%), hypo- (25%) or normalgesic (57%) types of PDN. These developmentally similar diabetic rats were studied in order to analyze mechanisms potentially underlying different thermal nociception. The proportion of IB4-positive capsaicin-sensitive small DRG neurons, strongly involved in thermal nociception, was not altered under different types of PDN implying differential changes at cellular and molecular level. We further focused on properties of T-type calcium and TRPV1 channels, which are known to be involved in Ca(2+) signaling and pathological nociception. Indeed, TRPV1-mediated signaling in these neurons was downregulated under hypo- and normalgesia and upregulated under hyperalgesia. A complex interplay between diabetes-induced changes in functional expression of Cav3.2 T-type calcium channels and depolarizing shift of their steady-state inactivation resulted in upregulation of these channels under hyper- and normalgesia and their downregulation under hypoalgesia. As a result, T-type window current was increased by several times under hyperalgesia partially underlying the increased resting [Ca(2+)]i observed in the hyperalgesic rats. At the same time Cav3.2-dependent Ca(2+) signaling was upregulated in all types of PDN. These findings indicate that alterations in functioning of Cav3.2 T-type and TRPV1 channels, specific for each type of PDN, may underlie the variety of pain syndromes induced by type 1 diabetes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbadis.2013.01.017DOI Listing

Publication Analysis

Top Keywords

cav32 t-type
12
t-type calcium
12
trpv1 channels
12
types pdn
12
functioning cav32
8
calcium trpv1
8
type diabetes
8
thermal nociception
8
ca2+ signaling
8
t-type
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!