A series of novel 1,3,5-triarylpyrazoline derivatives was synthesized by the reaction of chalcone and 5-aryl-2-hydrazinyl-1,3,4-thiadiazole in 43.3-84.7% yields. The structures of compounds were characterized using IR, (1)H NMR and HRMS spectroscopy and X-ray diffraction analysis. The absorption and fluorescence characteristics of the compounds were investigated in dichloromethane, toluene, acetonitrile, N,N-dimethylformamide and tetrahydrofuran. The results showed that the absorption maxima of the compounds vary from 366 to 370nm depending on the group bound to benzene rings. The maximum emission spectra of the compounds in dichloromethane were dependent on nature of groups in benzene ring. Furthermore, the compound 3b can be used to determine Cu(2+) ion with high selectivity and a low detection limit in the DMF:H2O=1:1 (v/v) solution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2012.12.062 | DOI Listing |
HGG Adv
January 2025
Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Inherited genetics represents an important contributor to risk of esophageal adenocarcinoma (EAC), and its precursor Barrett's esophagus (BE). Genome-wide association studies have identified ∼30 susceptibility variants for BE/EAC, yet genetic interactions remain unexamined. To address challenges in large-scale G×G scans, we combined knowledge-guided filtering and machine learning approaches, focusing on genes with (A) known/plausible links to BE/EAC pathogenesis (n=493) or (B) prior evidence of biological interactions (n=4,196).
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
DP Technology, Beijing, 100080, China.
Powder X-ray diffraction (PXRD) is a prevalent technique in materials characterization. While the analysis of PXRD often requires extensive human manual intervention, and most automated method only achieved at coarse-grained level. The more difficult and important task of fine-grained crystal structure prediction from PXRD remains unaddressed.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Research Institute of Big Data Science and Industry, Shanxi University, Taiyuan, Shanxi, 030006, China.
The Streptococcus canis Cas9 protein (ScCas9) recognizes the NNG protospacer adjacent motif (PAM), offering a wider range of targets than that offered by the commonly used S. pyogenes Cas9 protein (SpCas9). However, both ScCas9 and its evolved Sc++ variant still exhibit low genome editing efficiency in plants, particularly at the less preferred NTG and NCG PAM targets.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
β-secretase (BACE1) is instrumental in amyloid-β (Aβ) production, with overexpression noted in Alzheimer's disease (AD) neuropathology. The interaction of Aβ with the receptor for advanced glycation endproducts (RAGE) facilitates cerebral uptake of Aβ and exacerbates its neurotoxicity and neuroinflammation, further augmenting BACE1 expression. Given the limitations of previous BACE1 inhibition efforts, the study explores reducing BACE1 expression to mitigate AD pathology.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China.
Liver organoids have been increasingly adopted as a critical in vitro model to study liver development and diseases. However, the pre-vascularization of liver organoids without affecting liver parenchymal specification remains a long-lasting challenge, which is essential for their application in regenerative medicine. Here, the large-scale formation of pre-vascularized human hepatobiliary organoids (vhHBOs) is presented without affecting liver epithelial specification via a novel strategy, namely nonparenchymal cell grafting (NCG).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!