Characterization of the mouse promoter region of the acyl-CoA synthetase 4 gene: role of Sp1 and CREB.

Mol Cell Endocrinol

Institute of Biomedical Investigations (INBIOMED), Department of Biochemistry, School of Medicine, University of Buenos Aires, National Research Council, Buenos Aires, Argentina.

Published: April 2013

Acyl-CoA synthetase 4 (Acsl4) is involved in several cellular functions including steroidogenesis, synaptic development and cancer metastasis. Although the expression of Acsl4 seems to be regulated by tissue- and cell-specific factors as well as pituitary hormones and growth factors, the transcriptional mechanisms involved remain unknown. We demonstrated hCG and cAMP regulation of Acsl4 mRNA in mouse steroidogenic MA-10 Leydig cells. We characterized the transcription initiation site and promoter of the Acsl4 mouse gene and identified three alternative splice variants present in MA-10 cells. Sequence analysis of a 1.5-kb fragment of the Acsl4 promoter revealed the absence of a TATA box and the presence of many putative binding sites for transcription factors including Sp1 and CREB. Functional characterization revealed that the specificity protein/Krüppel-like factor Sp1 binding site in the proximal promoter is involved in basal activity and that the cAMP response element-binding site is involved in cAMP stimulation of Acsl4 transcription.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mce.2013.01.016DOI Listing

Publication Analysis

Top Keywords

acyl-coa synthetase
8
sp1 creb
8
acsl4
6
characterization mouse
4
promoter
4
mouse promoter
4
promoter region
4
region acyl-coa
4
synthetase gene
4
gene role
4

Similar Publications

Background: The inheritance of the short allele, encoding the serotonin transporter (SERT) in humans, increases susceptibility to neuropsychiatric and metabolic disorders, with aging and female sex further exacerbating these conditions. Both central and peripheral mechanisms of the compromised serotonin (5-HT) system play crucial roles in this context. Previous studies on SERT-deficient (Sert) mice, which model human SERT deficiency, have demonstrated emotional and metabolic disturbances, exacerbated by exposure to a high-fat Western diet (WD).

View Article and Find Full Text PDF

Background/objectives: The pathogenesis of metabolic dysfunction-associated steatohepatitis (MASH) is closely associated with increased oxidative stress and lipid peroxidation. Coenzyme Q (CoQ) and selenium (Se) are well-established antioxidants with protective effects against oxidative damage. This study aimed to investigate the effects of CoQ and Se in ameliorating MASH induced by a methionine choline-deficient (MCD) diet in mice.

View Article and Find Full Text PDF

Background: Metastasis is a leading cause of cancer-related death in castration-resistant prostate cancer (CRPC) patients. Circular RNAs (circRNAs) have emerged as key regulators of the metastasis of various cancers. However, the functional effects and regulatory mechanisms of circRNAs in metastatic CRPC (mCRPC) remain largely unknown.

View Article and Find Full Text PDF

ACSL4 Regulates LPS-Induced Ferroptosis in Cardiomyocytes through FASN.

Ann Clin Lab Sci

November 2024

Emergency Department, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, Zhejiang, China

Objective: Myocardial injury is a prevalent complication of sepsis. This study aims to shed light on the role of Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4) in regulating Fatty Acid Synthase (FASN) to identify the intrinsic molecular mechanisms of sepsis-induced myocardial injury.

Method: H9c2 cells were treated with Lipopolysaccharide (LPS) to model sepsis-induced cardiomyocyte injury and were subsequently divided into seven groups: Control, LPS, LPS+sh-NC, LPS+sh-ACSL4, LPS+sh-ACSL4+Erastin, LPS+sh-ACSL4+oe-NC, and LPS+sh-ACSL4+oe-FASN.

View Article and Find Full Text PDF

ACSL1 Aggravates Thromboinflammation by LPC/LPA Metabolic Axis in Hyperlipidemia Associated Myocardial Ischemia-Reperfusion Injury.

Adv Sci (Weinh)

January 2025

Shanghai Key Laboratory of Vascular Lesions and Remodeling, Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.

Acute myocardial infarction (AMI) is associated with well-established metabolic risk factors, especially hyperlipidemia and obesity. Myocardial ischemia-reperfusion injury (mIRI) significantly offsets the therapeutic efficacy of revascularization. Previous studies indicated that disrupted lipid homeostasis can lead to lipid peroxidation damage and inflammation, yet the underlying mechanisms remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!