Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Neural progenitors of the Drosophila larval brain, called neuroblasts, can be divided into distinct populations based on patterns of proliferation and differentiation. Type I neuroblasts produce ganglion mother cells (GMCs) that divide once to produce differentiated progeny, while type II neuroblasts produce self-renewing intermediate neural progenitors (INPs) and thus generate lineages containing many more progeny. We identified Taranis (Tara) as an important determinant of type I lineage-specific neural progenitor proliferation patterns. Tara is an ortholog of mammalian SERTAD proteins that are known to regulate cell cycle progression. Tara is differentially-expressed in neural progenitors, with high levels of expression in proliferating type I neuroblasts but no detectable expression in type II lineage INPs. Tara is necessary for cell cycle reactivation in quiescent neuroblasts and for cell cycle progression in type I lineages. Cell cycle defects in tara mutant neuroblasts are due to decreased activation of the E2F1/Dp transcription factor complex and delayed progression through S-phase. Mis-expression of tara in type II lineages delays INP cell cycle progression and induces premature differentiation of INPs into GMCs. Premature INP differentiation can also be induced by loss of E2F1/Dp function and elevated E2F1/Dp expression suppresses Tara-induced INP differentiation. Our results show that lineage-specific Tara expression is necessary for proper brain development and suggest that distinct cell cycle regulatory mechanisms exist in type I versus type II neural progenitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ydbio.2013.01.025 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!