Background: To prevent falls in the elderly, especially those with low bone density, is it necessary to maintain muscle coordination and balance. The aim of this study was to examine the effect of classical balance training (BAL) and whole-body vibration training (VIB) on postural control in post-menopausal women with low bone density.

Methods: Sixty-eight subjects began the study and 57 completed the nine-month intervention program. All subjects performed resistive exercise and were randomized to either the BAL- (N=31) or VIB-group (N=26). The BAL-group performed progressive balance and coordination training and the VIB-group underwent, in total, four minutes of vibration (depending on exercise; 24-26Hz and 4-8mm range) on the Galileo Fitness. Every month, the performance of a single leg stance task on a standard unstable surface (Posturomed) was tested. At baseline and end of the study only, single leg stance, Romberg-stance, semi-tandem-stance and tandem-stance were tested on a ground reaction force platform (Leonardo).

Results: The velocity of movement on the Posturomed improved by 28.3 (36.1%) (p<0.001) in the VIB-group and 18.5 (31.5%) (p<0.001) in the BAL-group by the end of the nine-month intervention period, but no differences were seen between the two groups (p=0.45). Balance tests performed on the Leonardo device did not show any significantly different responses between the two groups after nine months (p≥0.09).

Conclusions: Strength training combined with either proprioceptive training or whole-body vibration was associated with improvements in some, but not all, measures of postural control in post-menopausal women with low bone density. The current study could not provide evidence for a significantly different impact of whole-body vibration or balance training on postural control.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gaitpost.2013.01.002DOI Listing

Publication Analysis

Top Keywords

whole-body vibration
8
postural control
8
control post-menopausal
8
low bone
8
single leg
8
leg stance
8
vibration versus
4
versus proprioceptive
4
training
4
proprioceptive training
4

Similar Publications

Background: Athletes participating in low-impact sports such as cycling and swimming are at increased risk for low bone mineral density, which may lead to long-term health issues. Exercise is known to increase bone mineral density, but there is little knowledge of the effects of this in athletes participating in low-impact sports. This review aims to identify potential exercise interventions that could improve bone health in these athletes.

View Article and Find Full Text PDF

This study explored the effects of training weight and amplitude in whole-body vibration (WBV) on exercise intensity, indicated by oxygen consumption (VO) and heart rate. In LOAD-study: ten participants performed squats under non-WBV and WBV (30 Hz 2 mm) conditions at 0%, 40%, and 80% bodyweight (BW). In AMPLITUDE-study: eight participants performed squats under non-WBV, low-amplitude WBV (30 Hz 2 mm), and high-amplitude WBV (30 Hz 4 mm) conditions with 0% and 40%BW.

View Article and Find Full Text PDF

Introduction: Whole body vibration (WBV) is thought to be associated with low back pain (LBP). To mitigate against this the International Organisation for Standardisation (ISO) have created the ISO 2631 standard, recommending safe dose limits. The aim of this research is to conduct a systematic review of available literature addressing the question, is WBV associated with LBP?

Methods: A literature search was performed from January 1970 until April 2022, including studies focusing on LBP and sciatica in association with WBV, looking specifically for ones reporting on military populations.

View Article and Find Full Text PDF

Objective: The purpose of this case study was to report the management of a patient with posterior tibialis tendon injury concurrent with gender-affirming hormone therapy (GAHT).

Clinical Features: A 31-year-old transgender male presented to a chiropractic clinic with spontaneous, right medial foot pain following running that day. Medical history revealed bilateral congenital pes planus and intramuscular administration of testosterone for 8 years.

View Article and Find Full Text PDF

Microcirculation is an essential system that regulates oxygen and nutrients to cells and tissues in response to various environmental stimuli and pathophysiological conditions. Diabetes mellitus can cause microvascular complications including nephropathy, neuropathy, and retinopathy. The pathogenesis of microvascular dysfunction in diabetes is associated with hyperglycemia and the result of an interplay of various factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!